Error estimates of the time-splitting methods for the nonlinear Schrödinger equation with semi-smooth nonlinearity
We establish error bounds of the Lie-Trotter time-splitting sine pseudospectral method for the nonlinear Schrödinger equation (NLSE) with semi-smooth nonlinearity f ( ρ ) = ρ σ f(\rho ) = \rho ^\sigma , where ρ = | ψ | 2 \rho =|\psi |^2 is the density with ψ \psi the wave function and σ > 0 \sigm...
Gespeichert in:
Veröffentlicht in: | Mathematics of computation 2024-07, Vol.93 (348), p.1599-1631 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1631 |
---|---|
container_issue | 348 |
container_start_page | 1599 |
container_title | Mathematics of computation |
container_volume | 93 |
creator | Bao, Weizhu Wang, Chushan |
description | We establish error bounds of the Lie-Trotter time-splitting sine pseudospectral method for the nonlinear Schrödinger equation (NLSE) with semi-smooth nonlinearity
f
(
ρ
)
=
ρ
σ
f(\rho ) = \rho ^\sigma
, where
ρ
=
|
ψ
|
2
\rho =|\psi |^2
is the density with
ψ
\psi
the wave function and
σ
>
0
\sigma >0
is the exponent of the semi-smooth nonlinearity. Under the assumption of
H
2
H^2
-solution of the NLSE, we prove error bounds at
O
(
τ
1
2
+
σ
+
h
1
+
2
σ
)
O(\tau ^{\frac {1}{2}+\sigma } + h^{1+2\sigma })
and
O
(
τ
+
h
2
)
O(\tau + h^{2})
in
L
2
L^2
-norm for
0
>
σ
≤
1
2
0>\sigma \leq \frac {1}{2}
and
σ
≥
1
2
\sigma \geq \frac {1}{2}
, respectively, and an error bound at
O
(
τ
1
2
+
h
)
O(\tau ^\frac {1}{2} + h)
in
H
1
H^1
-norm for
σ
≥
1
2
\sigma \geq \frac {1}{2}
, where
h
h
and
τ
\tau
are the mesh size and time step size, respectively. In addition, when
1
2
>
σ
>
1
\frac {1}{2}>\sigma >1
and under the assumption of
H
3
H^3
-solution of the NLSE, we show an error bound at
O
(
τ
σ
+
h
2
σ
)
O(\tau ^{\sigma } + h^{2\sigma })
in
H
1
H^1
-norm. Two key ingredients are adopted in our proof: one is to adopt an unconditional
L
2
L^2
-stability of the numerical flow in order to avoid an a priori estimate of the numerical solution for the case of
0
>
σ
≤
1
2
0 > \sigma \leq \frac {1}{2}
, and to establish an
l
∞
l^\infty
-conditional
H
1
H^1
-stability to obtain the
l
∞
l^\infty
-bound of the numerical solution by using the mathematical induction and the error estimates for the case of
σ
≥
1
2
\sigma \ge \frac {1}{2}
; and the other one is to introduce a regularization technique to avoid the singularity of the semi-smooth nonlinearity in obtaining improved local truncation errors. Finally, numerical results are reported to demonstrate our error bounds. |
doi_str_mv | 10.1090/mcom/3900 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1090_mcom_3900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_mcom_3900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1790-a24acb2f0abda319409b5559bf5ce176b80887bcebaf6a715b5ab39c068cfb923</originalsourceid><addsrcrecordid>eNo9kM1KxDAUhYMoWEcXvkG2LuLctE3TLGUYf2DAhbouSZrYSNuMSUTmxXwBX8wUxdW9l3PugfMhdEnhmoKA9aT9tK4EwBEqKLQtadq6PEYFQMkI47Q9RWcxvgEAbRgvUNyG4AM2MblJJhOxtzgNBufTkLgfXUpufsWTSYPvI7bZu8izn0c3Gxnwkx7C91efTSbHvH_I5PyMP10acDSTI3HyPu__Dy4dztGJlWM0F39zhV5ut8-be7J7vHvY3OyIplwAkWUttSotSNXLiooahGKMCWWZNpQ3qs39uNJGSdtITpliUlVCQ9Nqq0RZrdDVb64OPsZgbLcPuWU4dBS6hVa30OoWWtUPap5iMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Error estimates of the time-splitting methods for the nonlinear Schrödinger equation with semi-smooth nonlinearity</title><source>American Mathematical Society Publications</source><creator>Bao, Weizhu ; Wang, Chushan</creator><creatorcontrib>Bao, Weizhu ; Wang, Chushan</creatorcontrib><description>We establish error bounds of the Lie-Trotter time-splitting sine pseudospectral method for the nonlinear Schrödinger equation (NLSE) with semi-smooth nonlinearity
f
(
ρ
)
=
ρ
σ
f(\rho ) = \rho ^\sigma
, where
ρ
=
|
ψ
|
2
\rho =|\psi |^2
is the density with
ψ
\psi
the wave function and
σ
>
0
\sigma >0
is the exponent of the semi-smooth nonlinearity. Under the assumption of
H
2
H^2
-solution of the NLSE, we prove error bounds at
O
(
τ
1
2
+
σ
+
h
1
+
2
σ
)
O(\tau ^{\frac {1}{2}+\sigma } + h^{1+2\sigma })
and
O
(
τ
+
h
2
)
O(\tau + h^{2})
in
L
2
L^2
-norm for
0
>
σ
≤
1
2
0>\sigma \leq \frac {1}{2}
and
σ
≥
1
2
\sigma \geq \frac {1}{2}
, respectively, and an error bound at
O
(
τ
1
2
+
h
)
O(\tau ^\frac {1}{2} + h)
in
H
1
H^1
-norm for
σ
≥
1
2
\sigma \geq \frac {1}{2}
, where
h
h
and
τ
\tau
are the mesh size and time step size, respectively. In addition, when
1
2
>
σ
>
1
\frac {1}{2}>\sigma >1
and under the assumption of
H
3
H^3
-solution of the NLSE, we show an error bound at
O
(
τ
σ
+
h
2
σ
)
O(\tau ^{\sigma } + h^{2\sigma })
in
H
1
H^1
-norm. Two key ingredients are adopted in our proof: one is to adopt an unconditional
L
2
L^2
-stability of the numerical flow in order to avoid an a priori estimate of the numerical solution for the case of
0
>
σ
≤
1
2
0 > \sigma \leq \frac {1}{2}
, and to establish an
l
∞
l^\infty
-conditional
H
1
H^1
-stability to obtain the
l
∞
l^\infty
-bound of the numerical solution by using the mathematical induction and the error estimates for the case of
σ
≥
1
2
\sigma \ge \frac {1}{2}
; and the other one is to introduce a regularization technique to avoid the singularity of the semi-smooth nonlinearity in obtaining improved local truncation errors. Finally, numerical results are reported to demonstrate our error bounds.</description><identifier>ISSN: 0025-5718</identifier><identifier>EISSN: 1088-6842</identifier><identifier>DOI: 10.1090/mcom/3900</identifier><language>eng</language><ispartof>Mathematics of computation, 2024-07, Vol.93 (348), p.1599-1631</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1790-a24acb2f0abda319409b5559bf5ce176b80887bcebaf6a715b5ab39c068cfb923</citedby><cites>FETCH-LOGICAL-c1790-a24acb2f0abda319409b5559bf5ce176b80887bcebaf6a715b5ab39c068cfb923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27913,27914</link.rule.ids></links><search><creatorcontrib>Bao, Weizhu</creatorcontrib><creatorcontrib>Wang, Chushan</creatorcontrib><title>Error estimates of the time-splitting methods for the nonlinear Schrödinger equation with semi-smooth nonlinearity</title><title>Mathematics of computation</title><description>We establish error bounds of the Lie-Trotter time-splitting sine pseudospectral method for the nonlinear Schrödinger equation (NLSE) with semi-smooth nonlinearity
f
(
ρ
)
=
ρ
σ
f(\rho ) = \rho ^\sigma
, where
ρ
=
|
ψ
|
2
\rho =|\psi |^2
is the density with
ψ
\psi
the wave function and
σ
>
0
\sigma >0
is the exponent of the semi-smooth nonlinearity. Under the assumption of
H
2
H^2
-solution of the NLSE, we prove error bounds at
O
(
τ
1
2
+
σ
+
h
1
+
2
σ
)
O(\tau ^{\frac {1}{2}+\sigma } + h^{1+2\sigma })
and
O
(
τ
+
h
2
)
O(\tau + h^{2})
in
L
2
L^2
-norm for
0
>
σ
≤
1
2
0>\sigma \leq \frac {1}{2}
and
σ
≥
1
2
\sigma \geq \frac {1}{2}
, respectively, and an error bound at
O
(
τ
1
2
+
h
)
O(\tau ^\frac {1}{2} + h)
in
H
1
H^1
-norm for
σ
≥
1
2
\sigma \geq \frac {1}{2}
, where
h
h
and
τ
\tau
are the mesh size and time step size, respectively. In addition, when
1
2
>
σ
>
1
\frac {1}{2}>\sigma >1
and under the assumption of
H
3
H^3
-solution of the NLSE, we show an error bound at
O
(
τ
σ
+
h
2
σ
)
O(\tau ^{\sigma } + h^{2\sigma })
in
H
1
H^1
-norm. Two key ingredients are adopted in our proof: one is to adopt an unconditional
L
2
L^2
-stability of the numerical flow in order to avoid an a priori estimate of the numerical solution for the case of
0
>
σ
≤
1
2
0 > \sigma \leq \frac {1}{2}
, and to establish an
l
∞
l^\infty
-conditional
H
1
H^1
-stability to obtain the
l
∞
l^\infty
-bound of the numerical solution by using the mathematical induction and the error estimates for the case of
σ
≥
1
2
\sigma \ge \frac {1}{2}
; and the other one is to introduce a regularization technique to avoid the singularity of the semi-smooth nonlinearity in obtaining improved local truncation errors. Finally, numerical results are reported to demonstrate our error bounds.</description><issn>0025-5718</issn><issn>1088-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KxDAUhYMoWEcXvkG2LuLctE3TLGUYf2DAhbouSZrYSNuMSUTmxXwBX8wUxdW9l3PugfMhdEnhmoKA9aT9tK4EwBEqKLQtadq6PEYFQMkI47Q9RWcxvgEAbRgvUNyG4AM2MblJJhOxtzgNBufTkLgfXUpufsWTSYPvI7bZu8izn0c3Gxnwkx7C91efTSbHvH_I5PyMP10acDSTI3HyPu__Dy4dztGJlWM0F39zhV5ut8-be7J7vHvY3OyIplwAkWUttSotSNXLiooahGKMCWWZNpQ3qs39uNJGSdtITpliUlVCQ9Nqq0RZrdDVb64OPsZgbLcPuWU4dBS6hVa30OoWWtUPap5iMQ</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Bao, Weizhu</creator><creator>Wang, Chushan</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202407</creationdate><title>Error estimates of the time-splitting methods for the nonlinear Schrödinger equation with semi-smooth nonlinearity</title><author>Bao, Weizhu ; Wang, Chushan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1790-a24acb2f0abda319409b5559bf5ce176b80887bcebaf6a715b5ab39c068cfb923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Weizhu</creatorcontrib><creatorcontrib>Wang, Chushan</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematics of computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Weizhu</au><au>Wang, Chushan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Error estimates of the time-splitting methods for the nonlinear Schrödinger equation with semi-smooth nonlinearity</atitle><jtitle>Mathematics of computation</jtitle><date>2024-07</date><risdate>2024</risdate><volume>93</volume><issue>348</issue><spage>1599</spage><epage>1631</epage><pages>1599-1631</pages><issn>0025-5718</issn><eissn>1088-6842</eissn><abstract>We establish error bounds of the Lie-Trotter time-splitting sine pseudospectral method for the nonlinear Schrödinger equation (NLSE) with semi-smooth nonlinearity
f
(
ρ
)
=
ρ
σ
f(\rho ) = \rho ^\sigma
, where
ρ
=
|
ψ
|
2
\rho =|\psi |^2
is the density with
ψ
\psi
the wave function and
σ
>
0
\sigma >0
is the exponent of the semi-smooth nonlinearity. Under the assumption of
H
2
H^2
-solution of the NLSE, we prove error bounds at
O
(
τ
1
2
+
σ
+
h
1
+
2
σ
)
O(\tau ^{\frac {1}{2}+\sigma } + h^{1+2\sigma })
and
O
(
τ
+
h
2
)
O(\tau + h^{2})
in
L
2
L^2
-norm for
0
>
σ
≤
1
2
0>\sigma \leq \frac {1}{2}
and
σ
≥
1
2
\sigma \geq \frac {1}{2}
, respectively, and an error bound at
O
(
τ
1
2
+
h
)
O(\tau ^\frac {1}{2} + h)
in
H
1
H^1
-norm for
σ
≥
1
2
\sigma \geq \frac {1}{2}
, where
h
h
and
τ
\tau
are the mesh size and time step size, respectively. In addition, when
1
2
>
σ
>
1
\frac {1}{2}>\sigma >1
and under the assumption of
H
3
H^3
-solution of the NLSE, we show an error bound at
O
(
τ
σ
+
h
2
σ
)
O(\tau ^{\sigma } + h^{2\sigma })
in
H
1
H^1
-norm. Two key ingredients are adopted in our proof: one is to adopt an unconditional
L
2
L^2
-stability of the numerical flow in order to avoid an a priori estimate of the numerical solution for the case of
0
>
σ
≤
1
2
0 > \sigma \leq \frac {1}{2}
, and to establish an
l
∞
l^\infty
-conditional
H
1
H^1
-stability to obtain the
l
∞
l^\infty
-bound of the numerical solution by using the mathematical induction and the error estimates for the case of
σ
≥
1
2
\sigma \ge \frac {1}{2}
; and the other one is to introduce a regularization technique to avoid the singularity of the semi-smooth nonlinearity in obtaining improved local truncation errors. Finally, numerical results are reported to demonstrate our error bounds.</abstract><doi>10.1090/mcom/3900</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5718 |
ispartof | Mathematics of computation, 2024-07, Vol.93 (348), p.1599-1631 |
issn | 0025-5718 1088-6842 |
language | eng |
recordid | cdi_crossref_primary_10_1090_mcom_3900 |
source | American Mathematical Society Publications |
title | Error estimates of the time-splitting methods for the nonlinear Schrödinger equation with semi-smooth nonlinearity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A27%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Error%20estimates%20of%20the%20time-splitting%20methods%20for%20the%20nonlinear%20Schr%C3%B6dinger%20equation%20with%20semi-smooth%20nonlinearity&rft.jtitle=Mathematics%20of%20computation&rft.au=Bao,%20Weizhu&rft.date=2024-07&rft.volume=93&rft.issue=348&rft.spage=1599&rft.epage=1631&rft.pages=1599-1631&rft.issn=0025-5718&rft.eissn=1088-6842&rft_id=info:doi/10.1090/mcom/3900&rft_dat=%3Ccrossref%3E10_1090_mcom_3900%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |