Refined Selmer equations for the thrice-punctured line in depth two

Kim gave a new proof of Siegel’s Theorem that there are only finitely many S S -integral points on P Z 1 ∖ { 0 , 1 , ∞ } \mathbb {P}^1_\mathbb {Z}\setminus \{0,1,\infty \} . One advantage of Kim’s method is that it in principle allows one to actually find these points, but the calculations grow vast...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of computation 2024-05, Vol.93 (347), p.1497-1527
Hauptverfasser: Best, Alex, Betts, L., Kumpitsch, Theresa, Lüdtke, Martin, McAndrew, Angus, Qian, Lie, Studnia, Elie, Xu, Yujie
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Kim gave a new proof of Siegel’s Theorem that there are only finitely many S S -integral points on P Z 1 ∖ { 0 , 1 , ∞ } \mathbb {P}^1_\mathbb {Z}\setminus \{0,1,\infty \} . One advantage of Kim’s method is that it in principle allows one to actually find these points, but the calculations grow vastly more complicated as the size of S S increases. In this paper, we implement a refinement of Kim’s method to explicitly compute various examples where S S has size  2 2 which has been introduced by Betts and Dogra. In so doing, we exhibit new examples of a natural generalization of a conjecture of Kim.
ISSN:0025-5718
1088-6842
DOI:10.1090/mcom/3898