Jacobi-type algorithms for homogeneous polynomial optimization on Stiefel manifolds with applications to tensor approximations

This paper mainly studies the gradient-based Jacobi-type algorithms to maximize two classes of homogeneous polynomials with orthogonality constraints, and establish their convergence properties. For the first class of homogeneous polynomials subject to a constraint on a Stiefel manifold, we reformul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of computation 2023-09, Vol.92 (343), p.2217-2245
Hauptverfasser: Sheng, Zhou, Li, Jianze, Ni, Qin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2245
container_issue 343
container_start_page 2217
container_title Mathematics of computation
container_volume 92
creator Sheng, Zhou
Li, Jianze
Ni, Qin
description This paper mainly studies the gradient-based Jacobi-type algorithms to maximize two classes of homogeneous polynomials with orthogonality constraints, and establish their convergence properties. For the first class of homogeneous polynomials subject to a constraint on a Stiefel manifold, we reformulate it as an optimization problem on a unitary group, which makes it possible to apply the gradient-based Jacobi-type (Jacobi-G) algorithm. Then, if the subproblem can always be represented as a quadratic form, we establish the global convergence of Jacobi-G under any one of three conditions. The convergence result for the first condition is an easy extension of the result by Usevich, Li, and Comon [SIAM J. Optim. 30 (2020), pp. 2998–3028], while other two conditions are new ones. This algorithm and the convergence properties apply to the well-known joint approximate symmetric tensor diagonalization. For the second class of homogeneous polynomials subject to constraints on the product of Stiefel manifolds, we reformulate it as an optimization problem on the product of unitary groups, and then develop a new gradient-based multiblock Jacobi-type (Jacobi-MG) algorithm to solve it. We establish the global convergence of Jacobi-MG under any one of the above three conditions, if the subproblem can always be represented as a quadratic form. This algorithm and the convergence properties are suitable to the well-known joint approximate tensor diagonalization. As the proximal variants of Jacobi-G and Jacobi-MG, we also propose the Jacobi-GP and Jacobi-MGP algorithms, and establish their global convergence without any further condition. Some numerical results are provided indicating the efficiency of the proposed algorithms.
doi_str_mv 10.1090/mcom/3834
format Article
fullrecord <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_mcom_3834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_mcom_3834</sourcerecordid><originalsourceid>FETCH-LOGICAL-a293t-c73b1593a9d7afb7c1050ce94b641904e4b6ea59e9b5c594747f0ebae223e9363</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK4e_Ac5ePFQN2mapjnK4icLHtRzSbOT3UjTKU1E14O_3db1LAzMMPPwMLyEnHN2xZlmi2AxLEQligMy46yqsrIq8kMyYyyXmVS8OiYnMb4xxngp1Yx8PxqLjc_Srgdq2g0OPm1DpA4HusWAG-gA3yPtsd11GLxpKfbJB_9lkseOjvWcPDhoaTCdd9iuI_0YHdT0fevtLxVpQpqgi6N0XA_46cP-cEqOnGkjnP31OXm9vXlZ3merp7uH5fUqM7kWKbNKNFxqYfRaGdcoy5lkFnTRlAXXrIBxACM16EZaqQtVKMegMZDnArQoxZxc7r12wBgHcHU_jD8Mu5qzegqunoKrp-BG9mLPmhD_wX4A1zZxwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Jacobi-type algorithms for homogeneous polynomial optimization on Stiefel manifolds with applications to tensor approximations</title><source>American Mathematical Society Publications</source><creator>Sheng, Zhou ; Li, Jianze ; Ni, Qin</creator><creatorcontrib>Sheng, Zhou ; Li, Jianze ; Ni, Qin</creatorcontrib><description>This paper mainly studies the gradient-based Jacobi-type algorithms to maximize two classes of homogeneous polynomials with orthogonality constraints, and establish their convergence properties. For the first class of homogeneous polynomials subject to a constraint on a Stiefel manifold, we reformulate it as an optimization problem on a unitary group, which makes it possible to apply the gradient-based Jacobi-type (Jacobi-G) algorithm. Then, if the subproblem can always be represented as a quadratic form, we establish the global convergence of Jacobi-G under any one of three conditions. The convergence result for the first condition is an easy extension of the result by Usevich, Li, and Comon [SIAM J. Optim. 30 (2020), pp. 2998–3028], while other two conditions are new ones. This algorithm and the convergence properties apply to the well-known joint approximate symmetric tensor diagonalization. For the second class of homogeneous polynomials subject to constraints on the product of Stiefel manifolds, we reformulate it as an optimization problem on the product of unitary groups, and then develop a new gradient-based multiblock Jacobi-type (Jacobi-MG) algorithm to solve it. We establish the global convergence of Jacobi-MG under any one of the above three conditions, if the subproblem can always be represented as a quadratic form. This algorithm and the convergence properties are suitable to the well-known joint approximate tensor diagonalization. As the proximal variants of Jacobi-G and Jacobi-MG, we also propose the Jacobi-GP and Jacobi-MGP algorithms, and establish their global convergence without any further condition. Some numerical results are provided indicating the efficiency of the proposed algorithms.</description><identifier>ISSN: 0025-5718</identifier><identifier>EISSN: 1088-6842</identifier><identifier>DOI: 10.1090/mcom/3834</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Research article</subject><ispartof>Mathematics of computation, 2023-09, Vol.92 (343), p.2217-2245</ispartof><rights>Copyright 2023 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a293t-c73b1593a9d7afb7c1050ce94b641904e4b6ea59e9b5c594747f0ebae223e9363</citedby><cites>FETCH-LOGICAL-a293t-c73b1593a9d7afb7c1050ce94b641904e4b6ea59e9b5c594747f0ebae223e9363</cites><orcidid>0000-0001-9295-5872 ; 0000-0002-0760-7994</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/mcom/2023-92-343/S0025-5718-2023-03834-0/S0025-5718-2023-03834-0.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/mcom/2023-92-343/S0025-5718-2023-03834-0/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,776,780,23309,27903,27904,77582,77592</link.rule.ids></links><search><creatorcontrib>Sheng, Zhou</creatorcontrib><creatorcontrib>Li, Jianze</creatorcontrib><creatorcontrib>Ni, Qin</creatorcontrib><title>Jacobi-type algorithms for homogeneous polynomial optimization on Stiefel manifolds with applications to tensor approximations</title><title>Mathematics of computation</title><addtitle>Math. Comp</addtitle><description>This paper mainly studies the gradient-based Jacobi-type algorithms to maximize two classes of homogeneous polynomials with orthogonality constraints, and establish their convergence properties. For the first class of homogeneous polynomials subject to a constraint on a Stiefel manifold, we reformulate it as an optimization problem on a unitary group, which makes it possible to apply the gradient-based Jacobi-type (Jacobi-G) algorithm. Then, if the subproblem can always be represented as a quadratic form, we establish the global convergence of Jacobi-G under any one of three conditions. The convergence result for the first condition is an easy extension of the result by Usevich, Li, and Comon [SIAM J. Optim. 30 (2020), pp. 2998–3028], while other two conditions are new ones. This algorithm and the convergence properties apply to the well-known joint approximate symmetric tensor diagonalization. For the second class of homogeneous polynomials subject to constraints on the product of Stiefel manifolds, we reformulate it as an optimization problem on the product of unitary groups, and then develop a new gradient-based multiblock Jacobi-type (Jacobi-MG) algorithm to solve it. We establish the global convergence of Jacobi-MG under any one of the above three conditions, if the subproblem can always be represented as a quadratic form. This algorithm and the convergence properties are suitable to the well-known joint approximate tensor diagonalization. As the proximal variants of Jacobi-G and Jacobi-MG, we also propose the Jacobi-GP and Jacobi-MGP algorithms, and establish their global convergence without any further condition. Some numerical results are provided indicating the efficiency of the proposed algorithms.</description><subject>Research article</subject><issn>0025-5718</issn><issn>1088-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK4e_Ac5ePFQN2mapjnK4icLHtRzSbOT3UjTKU1E14O_3db1LAzMMPPwMLyEnHN2xZlmi2AxLEQligMy46yqsrIq8kMyYyyXmVS8OiYnMb4xxngp1Yx8PxqLjc_Srgdq2g0OPm1DpA4HusWAG-gA3yPtsd11GLxpKfbJB_9lkseOjvWcPDhoaTCdd9iuI_0YHdT0fevtLxVpQpqgi6N0XA_46cP-cEqOnGkjnP31OXm9vXlZ3merp7uH5fUqM7kWKbNKNFxqYfRaGdcoy5lkFnTRlAXXrIBxACM16EZaqQtVKMegMZDnArQoxZxc7r12wBgHcHU_jD8Mu5qzegqunoKrp-BG9mLPmhD_wX4A1zZxwQ</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Sheng, Zhou</creator><creator>Li, Jianze</creator><creator>Ni, Qin</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9295-5872</orcidid><orcidid>https://orcid.org/0000-0002-0760-7994</orcidid></search><sort><creationdate>20230901</creationdate><title>Jacobi-type algorithms for homogeneous polynomial optimization on Stiefel manifolds with applications to tensor approximations</title><author>Sheng, Zhou ; Li, Jianze ; Ni, Qin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a293t-c73b1593a9d7afb7c1050ce94b641904e4b6ea59e9b5c594747f0ebae223e9363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Research article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheng, Zhou</creatorcontrib><creatorcontrib>Li, Jianze</creatorcontrib><creatorcontrib>Ni, Qin</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematics of computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheng, Zhou</au><au>Li, Jianze</au><au>Ni, Qin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Jacobi-type algorithms for homogeneous polynomial optimization on Stiefel manifolds with applications to tensor approximations</atitle><jtitle>Mathematics of computation</jtitle><stitle>Math. Comp</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>92</volume><issue>343</issue><spage>2217</spage><epage>2245</epage><pages>2217-2245</pages><issn>0025-5718</issn><eissn>1088-6842</eissn><abstract>This paper mainly studies the gradient-based Jacobi-type algorithms to maximize two classes of homogeneous polynomials with orthogonality constraints, and establish their convergence properties. For the first class of homogeneous polynomials subject to a constraint on a Stiefel manifold, we reformulate it as an optimization problem on a unitary group, which makes it possible to apply the gradient-based Jacobi-type (Jacobi-G) algorithm. Then, if the subproblem can always be represented as a quadratic form, we establish the global convergence of Jacobi-G under any one of three conditions. The convergence result for the first condition is an easy extension of the result by Usevich, Li, and Comon [SIAM J. Optim. 30 (2020), pp. 2998–3028], while other two conditions are new ones. This algorithm and the convergence properties apply to the well-known joint approximate symmetric tensor diagonalization. For the second class of homogeneous polynomials subject to constraints on the product of Stiefel manifolds, we reformulate it as an optimization problem on the product of unitary groups, and then develop a new gradient-based multiblock Jacobi-type (Jacobi-MG) algorithm to solve it. We establish the global convergence of Jacobi-MG under any one of the above three conditions, if the subproblem can always be represented as a quadratic form. This algorithm and the convergence properties are suitable to the well-known joint approximate tensor diagonalization. As the proximal variants of Jacobi-G and Jacobi-MG, we also propose the Jacobi-GP and Jacobi-MGP algorithms, and establish their global convergence without any further condition. Some numerical results are provided indicating the efficiency of the proposed algorithms.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/mcom/3834</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0001-9295-5872</orcidid><orcidid>https://orcid.org/0000-0002-0760-7994</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5718
ispartof Mathematics of computation, 2023-09, Vol.92 (343), p.2217-2245
issn 0025-5718
1088-6842
language eng
recordid cdi_crossref_primary_10_1090_mcom_3834
source American Mathematical Society Publications
subjects Research article
title Jacobi-type algorithms for homogeneous polynomial optimization on Stiefel manifolds with applications to tensor approximations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A20%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Jacobi-type%20algorithms%20for%20homogeneous%20polynomial%20optimization%20on%20Stiefel%20manifolds%20with%20applications%20to%20tensor%20approximations&rft.jtitle=Mathematics%20of%20computation&rft.au=Sheng,%20Zhou&rft.date=2023-09-01&rft.volume=92&rft.issue=343&rft.spage=2217&rft.epage=2245&rft.pages=2217-2245&rft.issn=0025-5718&rft.eissn=1088-6842&rft_id=info:doi/10.1090/mcom/3834&rft_dat=%3Cams_cross%3E10_1090_mcom_3834%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true