Quinary forms and paramodular forms

We work out the exact relationship between algebraic modular forms for a two-by-two general unitary group over a definite quaternion algebra, and those arising from genera of positive-definite quinary lattices, relating stabilisers of local lattices with specific open compact subgroups, paramodular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of computation 2024-07, Vol.93 (348), p.1805-1858
Hauptverfasser: Dummigan, N., Pacetti, A., Rama, G., Tornaría, G.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1858
container_issue 348
container_start_page 1805
container_title Mathematics of computation
container_volume 93
creator Dummigan, N.
Pacetti, A.
Rama, G.
Tornaría, G.
description We work out the exact relationship between algebraic modular forms for a two-by-two general unitary group over a definite quaternion algebra, and those arising from genera of positive-definite quinary lattices, relating stabilisers of local lattices with specific open compact subgroups, paramodular at split places, and with Atkin-Lehner operators. Combining this with the recent work of Rösner and Weissauer, proving conjectures of Ibukiyama on Jacquet-Langlands type correspondences (mildly generalised here), provides an effective tool for computing Hecke eigenvalues for Siegel modular forms of degree two and paramodular level. It also enables us to prove examples of congruences of Hecke eigenvalues connecting Siegel modular forms of degrees two and one. These include some of a type conjectured by Harder at level one, supported by computations of Fretwell at higher levels, and a subtly different congruence discovered experimentally by Buzzard and Golyshev.
doi_str_mv 10.1090/mcom/3815
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1090_mcom_3815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_mcom_3815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c215t-79d3a035392c3ea8fc64d415587dd97beaac2f4bbb2236819aa7acf3b49ee6873</originalsourceid><addsrcrecordid>eNotz0tLAzEUBeAgCo7Vhf9gwJWL2Jt3spSiVSiIoOtw84JK0ymJXfjvdairA2dxOB8htwweGDhY1jjVpbBMnZGBgbVUW8nPyQDAFVWG2Uty1fsXADCtzEDu3o_bPbafsUyt9hH3aTxgwzql4w7bqb0mFwV3Pd_854J8Pj99rF7o5m39unrc0MiZ-qbGJYEglHA8ioy2RC2TZEpZk5IzISNGXmQIgXOhLXOIBmMRQbqctTViQe5Pu7FNvbdc_KFt6985z8DPOj_r_KwTv4xhQp8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quinary forms and paramodular forms</title><source>American Mathematical Society Publications</source><creator>Dummigan, N. ; Pacetti, A. ; Rama, G. ; Tornaría, G.</creator><creatorcontrib>Dummigan, N. ; Pacetti, A. ; Rama, G. ; Tornaría, G.</creatorcontrib><description>We work out the exact relationship between algebraic modular forms for a two-by-two general unitary group over a definite quaternion algebra, and those arising from genera of positive-definite quinary lattices, relating stabilisers of local lattices with specific open compact subgroups, paramodular at split places, and with Atkin-Lehner operators. Combining this with the recent work of Rösner and Weissauer, proving conjectures of Ibukiyama on Jacquet-Langlands type correspondences (mildly generalised here), provides an effective tool for computing Hecke eigenvalues for Siegel modular forms of degree two and paramodular level. It also enables us to prove examples of congruences of Hecke eigenvalues connecting Siegel modular forms of degrees two and one. These include some of a type conjectured by Harder at level one, supported by computations of Fretwell at higher levels, and a subtly different congruence discovered experimentally by Buzzard and Golyshev.</description><identifier>ISSN: 0025-5718</identifier><identifier>EISSN: 1088-6842</identifier><identifier>DOI: 10.1090/mcom/3815</identifier><language>eng</language><ispartof>Mathematics of computation, 2024-07, Vol.93 (348), p.1805-1858</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c215t-79d3a035392c3ea8fc64d415587dd97beaac2f4bbb2236819aa7acf3b49ee6873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dummigan, N.</creatorcontrib><creatorcontrib>Pacetti, A.</creatorcontrib><creatorcontrib>Rama, G.</creatorcontrib><creatorcontrib>Tornaría, G.</creatorcontrib><title>Quinary forms and paramodular forms</title><title>Mathematics of computation</title><description>We work out the exact relationship between algebraic modular forms for a two-by-two general unitary group over a definite quaternion algebra, and those arising from genera of positive-definite quinary lattices, relating stabilisers of local lattices with specific open compact subgroups, paramodular at split places, and with Atkin-Lehner operators. Combining this with the recent work of Rösner and Weissauer, proving conjectures of Ibukiyama on Jacquet-Langlands type correspondences (mildly generalised here), provides an effective tool for computing Hecke eigenvalues for Siegel modular forms of degree two and paramodular level. It also enables us to prove examples of congruences of Hecke eigenvalues connecting Siegel modular forms of degrees two and one. These include some of a type conjectured by Harder at level one, supported by computations of Fretwell at higher levels, and a subtly different congruence discovered experimentally by Buzzard and Golyshev.</description><issn>0025-5718</issn><issn>1088-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotz0tLAzEUBeAgCo7Vhf9gwJWL2Jt3spSiVSiIoOtw84JK0ymJXfjvdairA2dxOB8htwweGDhY1jjVpbBMnZGBgbVUW8nPyQDAFVWG2Uty1fsXADCtzEDu3o_bPbafsUyt9hH3aTxgwzql4w7bqb0mFwV3Pd_854J8Pj99rF7o5m39unrc0MiZ-qbGJYEglHA8ioy2RC2TZEpZk5IzISNGXmQIgXOhLXOIBmMRQbqctTViQe5Pu7FNvbdc_KFt6985z8DPOj_r_KwTv4xhQp8</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Dummigan, N.</creator><creator>Pacetti, A.</creator><creator>Rama, G.</creator><creator>Tornaría, G.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240701</creationdate><title>Quinary forms and paramodular forms</title><author>Dummigan, N. ; Pacetti, A. ; Rama, G. ; Tornaría, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c215t-79d3a035392c3ea8fc64d415587dd97beaac2f4bbb2236819aa7acf3b49ee6873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dummigan, N.</creatorcontrib><creatorcontrib>Pacetti, A.</creatorcontrib><creatorcontrib>Rama, G.</creatorcontrib><creatorcontrib>Tornaría, G.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematics of computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dummigan, N.</au><au>Pacetti, A.</au><au>Rama, G.</au><au>Tornaría, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quinary forms and paramodular forms</atitle><jtitle>Mathematics of computation</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>93</volume><issue>348</issue><spage>1805</spage><epage>1858</epage><pages>1805-1858</pages><issn>0025-5718</issn><eissn>1088-6842</eissn><abstract>We work out the exact relationship between algebraic modular forms for a two-by-two general unitary group over a definite quaternion algebra, and those arising from genera of positive-definite quinary lattices, relating stabilisers of local lattices with specific open compact subgroups, paramodular at split places, and with Atkin-Lehner operators. Combining this with the recent work of Rösner and Weissauer, proving conjectures of Ibukiyama on Jacquet-Langlands type correspondences (mildly generalised here), provides an effective tool for computing Hecke eigenvalues for Siegel modular forms of degree two and paramodular level. It also enables us to prove examples of congruences of Hecke eigenvalues connecting Siegel modular forms of degrees two and one. These include some of a type conjectured by Harder at level one, supported by computations of Fretwell at higher levels, and a subtly different congruence discovered experimentally by Buzzard and Golyshev.</abstract><doi>10.1090/mcom/3815</doi><tpages>54</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5718
ispartof Mathematics of computation, 2024-07, Vol.93 (348), p.1805-1858
issn 0025-5718
1088-6842
language eng
recordid cdi_crossref_primary_10_1090_mcom_3815
source American Mathematical Society Publications
title Quinary forms and paramodular forms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A00%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quinary%20forms%20and%20paramodular%20forms&rft.jtitle=Mathematics%20of%20computation&rft.au=Dummigan,%20N.&rft.date=2024-07-01&rft.volume=93&rft.issue=348&rft.spage=1805&rft.epage=1858&rft.pages=1805-1858&rft.issn=0025-5718&rft.eissn=1088-6842&rft_id=info:doi/10.1090/mcom/3815&rft_dat=%3Ccrossref%3E10_1090_mcom_3815%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true