Uniform preconditioners for problems of negative order

Uniform preconditioners for operators of negative order discretized by (dis)continuous piecewise polynomials of any order are constructed from a boundedly invertible operator of opposite order discretized by continuous piecewise linears. Besides the cost of the application of the latter discretized...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of computation 2020-03, Vol.89 (322), p.645-674
Hauptverfasser: Rob Stevenson, Raymond van Venetië
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 674
container_issue 322
container_start_page 645
container_title Mathematics of computation
container_volume 89
creator Rob Stevenson
Raymond van Venetië
description Uniform preconditioners for operators of negative order discretized by (dis)continuous piecewise polynomials of any order are constructed from a boundedly invertible operator of opposite order discretized by continuous piecewise linears. Besides the cost of the application of the latter discretized operator, the other cost of the preconditioner scales linearly with the number of mesh cells. Compared to earlier proposals, the preconditioner has the following advantages: It does not require the inverse of a non-diagonal matrix; it applies without any mildly grading assumption on the mesh; and it does not require a barycentric refinement of the mesh underlying the trial space.
doi_str_mv 10.1090/mcom/3481
format Article
fullrecord <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_mcom_3481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_mcom_3481</sourcerecordid><originalsourceid>FETCH-LOGICAL-a293t-206e456c48dc1717ac2b9c636e774166fd617aacd0b2d55b18318df2f91901af3</originalsourceid><addsrcrecordid>eNp9j0tLxDAURoM4YJ1x4T_owo2LOvcmzaNLGXzBgBtnHdI8pDJphqQI_ntbxrWrDw6HDw4htwgPCB1so01xy1qFF6RCUKoRqqWXpAKgvOES1RW5LuULAFBwWRFxGIeQcqxP2ds0umEa0uhzqWc4s9QffSx1CvXoP800fPs6ZefzhqyCORZ_87drcnh--ti9Nvv3l7fd474xtGNTQ0H4lgvbKmdRojSW9p0VTHgpWxQiODFDYx301HHeo2KoXKChww7QBLYm9-dfm1Mp2Qd9ykM0-Ucj6CVYL8F6CZ7du7NrYvlH-wXZ21UJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uniform preconditioners for problems of negative order</title><source>American Mathematical Society Publications</source><creator>Rob Stevenson ; Raymond van Venetië</creator><creatorcontrib>Rob Stevenson ; Raymond van Venetië</creatorcontrib><description>Uniform preconditioners for operators of negative order discretized by (dis)continuous piecewise polynomials of any order are constructed from a boundedly invertible operator of opposite order discretized by continuous piecewise linears. Besides the cost of the application of the latter discretized operator, the other cost of the preconditioner scales linearly with the number of mesh cells. Compared to earlier proposals, the preconditioner has the following advantages: It does not require the inverse of a non-diagonal matrix; it applies without any mildly grading assumption on the mesh; and it does not require a barycentric refinement of the mesh underlying the trial space.</description><identifier>ISSN: 0025-5718</identifier><identifier>EISSN: 1088-6842</identifier><identifier>DOI: 10.1090/mcom/3481</identifier><language>eng</language><ispartof>Mathematics of computation, 2020-03, Vol.89 (322), p.645-674</ispartof><rights>Copyright 2019, American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a293t-206e456c48dc1717ac2b9c636e774166fd617aacd0b2d55b18318df2f91901af3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/mcom/2020-89-322/S0025-5718-2019-03481-6/S0025-5718-2019-03481-6.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/mcom/2020-89-322/S0025-5718-2019-03481-6/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,780,784,23328,27924,27925,77836,77846</link.rule.ids></links><search><creatorcontrib>Rob Stevenson</creatorcontrib><creatorcontrib>Raymond van Venetië</creatorcontrib><title>Uniform preconditioners for problems of negative order</title><title>Mathematics of computation</title><description>Uniform preconditioners for operators of negative order discretized by (dis)continuous piecewise polynomials of any order are constructed from a boundedly invertible operator of opposite order discretized by continuous piecewise linears. Besides the cost of the application of the latter discretized operator, the other cost of the preconditioner scales linearly with the number of mesh cells. Compared to earlier proposals, the preconditioner has the following advantages: It does not require the inverse of a non-diagonal matrix; it applies without any mildly grading assumption on the mesh; and it does not require a barycentric refinement of the mesh underlying the trial space.</description><issn>0025-5718</issn><issn>1088-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9j0tLxDAURoM4YJ1x4T_owo2LOvcmzaNLGXzBgBtnHdI8pDJphqQI_ntbxrWrDw6HDw4htwgPCB1so01xy1qFF6RCUKoRqqWXpAKgvOES1RW5LuULAFBwWRFxGIeQcqxP2ds0umEa0uhzqWc4s9QffSx1CvXoP800fPs6ZefzhqyCORZ_87drcnh--ti9Nvv3l7fd474xtGNTQ0H4lgvbKmdRojSW9p0VTHgpWxQiODFDYx301HHeo2KoXKChww7QBLYm9-dfm1Mp2Qd9ykM0-Ucj6CVYL8F6CZ7du7NrYvlH-wXZ21UJ</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Rob Stevenson</creator><creator>Raymond van Venetië</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200301</creationdate><title>Uniform preconditioners for problems of negative order</title><author>Rob Stevenson ; Raymond van Venetië</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a293t-206e456c48dc1717ac2b9c636e774166fd617aacd0b2d55b18318df2f91901af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rob Stevenson</creatorcontrib><creatorcontrib>Raymond van Venetië</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematics of computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rob Stevenson</au><au>Raymond van Venetië</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform preconditioners for problems of negative order</atitle><jtitle>Mathematics of computation</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>89</volume><issue>322</issue><spage>645</spage><epage>674</epage><pages>645-674</pages><issn>0025-5718</issn><eissn>1088-6842</eissn><abstract>Uniform preconditioners for operators of negative order discretized by (dis)continuous piecewise polynomials of any order are constructed from a boundedly invertible operator of opposite order discretized by continuous piecewise linears. Besides the cost of the application of the latter discretized operator, the other cost of the preconditioner scales linearly with the number of mesh cells. Compared to earlier proposals, the preconditioner has the following advantages: It does not require the inverse of a non-diagonal matrix; it applies without any mildly grading assumption on the mesh; and it does not require a barycentric refinement of the mesh underlying the trial space.</abstract><doi>10.1090/mcom/3481</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5718
ispartof Mathematics of computation, 2020-03, Vol.89 (322), p.645-674
issn 0025-5718
1088-6842
language eng
recordid cdi_crossref_primary_10_1090_mcom_3481
source American Mathematical Society Publications
title Uniform preconditioners for problems of negative order
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A18%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20preconditioners%20for%20problems%20of%20negative%20order&rft.jtitle=Mathematics%20of%20computation&rft.au=Rob%20Stevenson&rft.date=2020-03-01&rft.volume=89&rft.issue=322&rft.spage=645&rft.epage=674&rft.pages=645-674&rft.issn=0025-5718&rft.eissn=1088-6842&rft_id=info:doi/10.1090/mcom/3481&rft_dat=%3Cams_cross%3E10_1090_mcom_3481%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true