A weak Galerkin finite element scheme for the Cahn-Hilliard equation
This article presents a weak Galerkin (WG) finite element method for the Cahn-Hilliard equation. The WG method makes use of piecewise polynomials as approximating functions, with weakly defined partial derivatives (first and second order) computed locally by using the information in the interior and...
Gespeichert in:
Veröffentlicht in: | Mathematics of computation 2019-01, Vol.88 (315), p.211-235 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 235 |
---|---|
container_issue | 315 |
container_start_page | 211 |
container_title | Mathematics of computation |
container_volume | 88 |
creator | WANG, JUNPING ZHAI, QILONG ZHANG, RAN ZHANG, SHANGYOU |
description | This article presents a weak Galerkin (WG) finite element method for the Cahn-Hilliard equation. The WG method makes use of piecewise polynomials as approximating functions, with weakly defined partial derivatives (first and second order) computed locally by using the information in the interior and on the boundary of each element. A stabilizer is constructed and added to the numerical scheme for the purpose of providing certain weak continuities for the approximating function. A mathematical convergence theory is developed for the corresponding numerical solutions, and optimal order of error estimates are derived. Some numerical results are presented to illustrate the efficiency and accuracy of the method. |
doi_str_mv | 10.1090/mcom/3369 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_mcom_3369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90025033</jstor_id><sourcerecordid>90025033</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-4ec31d735b7dc41b0d79f810d44e36ffa10b837013774b91681793e9990d9543</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoOFYX_gAhCzcuxr7XZCbJslRthYKb7ofMzAtNOx-ajIj_3g4jLl29C_dw4TzGbhEeEQzM26pv50Lk5owlCFqnuZaLc5YALLI0U6gv2VWMBwDAPFMJe1ryL7JHvrYNhaPvuPOdH4hTQy11A4_V_hS46wMf9sRXdt-lG9803oaa08enHXzfXbMLZ5tIN793xnYvz7vVJt2-rV9Xy21qBWZDKqkSWCuRlaquJJZQK-M0Qi0lidw5i1BqoQCFUrI0mGtURpAxBmqTSTFjD9NsFfoYA7niPfjWhu8CoRjti9G-GO1P7N3EHuLQhz_QjH8AIU79_dTbNv4z8wNna2F6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A weak Galerkin finite element scheme for the Cahn-Hilliard equation</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>American Mathematical Society Publications</source><creator>WANG, JUNPING ; ZHAI, QILONG ; ZHANG, RAN ; ZHANG, SHANGYOU</creator><creatorcontrib>WANG, JUNPING ; ZHAI, QILONG ; ZHANG, RAN ; ZHANG, SHANGYOU</creatorcontrib><description>This article presents a weak Galerkin (WG) finite element method for the Cahn-Hilliard equation. The WG method makes use of piecewise polynomials as approximating functions, with weakly defined partial derivatives (first and second order) computed locally by using the information in the interior and on the boundary of each element. A stabilizer is constructed and added to the numerical scheme for the purpose of providing certain weak continuities for the approximating function. A mathematical convergence theory is developed for the corresponding numerical solutions, and optimal order of error estimates are derived. Some numerical results are presented to illustrate the efficiency and accuracy of the method.</description><identifier>ISSN: 0025-5718</identifier><identifier>EISSN: 1088-6842</identifier><identifier>DOI: 10.1090/mcom/3369</identifier><language>eng</language><publisher>American Mathematical Society</publisher><ispartof>Mathematics of computation, 2019-01, Vol.88 (315), p.211-235</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-4ec31d735b7dc41b0d79f810d44e36ffa10b837013774b91681793e9990d9543</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/mcom/2019-88-315/S0025-5718-2018-03369-5/S0025-5718-2018-03369-5.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/mcom/2019-88-315/S0025-5718-2018-03369-5/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,776,780,23304,23308,27903,27904,77583,77585,77593,77595</link.rule.ids></links><search><creatorcontrib>WANG, JUNPING</creatorcontrib><creatorcontrib>ZHAI, QILONG</creatorcontrib><creatorcontrib>ZHANG, RAN</creatorcontrib><creatorcontrib>ZHANG, SHANGYOU</creatorcontrib><title>A weak Galerkin finite element scheme for the Cahn-Hilliard equation</title><title>Mathematics of computation</title><description>This article presents a weak Galerkin (WG) finite element method for the Cahn-Hilliard equation. The WG method makes use of piecewise polynomials as approximating functions, with weakly defined partial derivatives (first and second order) computed locally by using the information in the interior and on the boundary of each element. A stabilizer is constructed and added to the numerical scheme for the purpose of providing certain weak continuities for the approximating function. A mathematical convergence theory is developed for the corresponding numerical solutions, and optimal order of error estimates are derived. Some numerical results are presented to illustrate the efficiency and accuracy of the method.</description><issn>0025-5718</issn><issn>1088-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoOFYX_gAhCzcuxr7XZCbJslRthYKb7ofMzAtNOx-ajIj_3g4jLl29C_dw4TzGbhEeEQzM26pv50Lk5owlCFqnuZaLc5YALLI0U6gv2VWMBwDAPFMJe1ryL7JHvrYNhaPvuPOdH4hTQy11A4_V_hS46wMf9sRXdt-lG9803oaa08enHXzfXbMLZ5tIN793xnYvz7vVJt2-rV9Xy21qBWZDKqkSWCuRlaquJJZQK-M0Qi0lidw5i1BqoQCFUrI0mGtURpAxBmqTSTFjD9NsFfoYA7niPfjWhu8CoRjti9G-GO1P7N3EHuLQhz_QjH8AIU79_dTbNv4z8wNna2F6</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>WANG, JUNPING</creator><creator>ZHAI, QILONG</creator><creator>ZHANG, RAN</creator><creator>ZHANG, SHANGYOU</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190101</creationdate><title>A weak Galerkin finite element scheme for the Cahn-Hilliard equation</title><author>WANG, JUNPING ; ZHAI, QILONG ; ZHANG, RAN ; ZHANG, SHANGYOU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-4ec31d735b7dc41b0d79f810d44e36ffa10b837013774b91681793e9990d9543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WANG, JUNPING</creatorcontrib><creatorcontrib>ZHAI, QILONG</creatorcontrib><creatorcontrib>ZHANG, RAN</creatorcontrib><creatorcontrib>ZHANG, SHANGYOU</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematics of computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WANG, JUNPING</au><au>ZHAI, QILONG</au><au>ZHANG, RAN</au><au>ZHANG, SHANGYOU</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A weak Galerkin finite element scheme for the Cahn-Hilliard equation</atitle><jtitle>Mathematics of computation</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>88</volume><issue>315</issue><spage>211</spage><epage>235</epage><pages>211-235</pages><issn>0025-5718</issn><eissn>1088-6842</eissn><abstract>This article presents a weak Galerkin (WG) finite element method for the Cahn-Hilliard equation. The WG method makes use of piecewise polynomials as approximating functions, with weakly defined partial derivatives (first and second order) computed locally by using the information in the interior and on the boundary of each element. A stabilizer is constructed and added to the numerical scheme for the purpose of providing certain weak continuities for the approximating function. A mathematical convergence theory is developed for the corresponding numerical solutions, and optimal order of error estimates are derived. Some numerical results are presented to illustrate the efficiency and accuracy of the method.</abstract><pub>American Mathematical Society</pub><doi>10.1090/mcom/3369</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5718 |
ispartof | Mathematics of computation, 2019-01, Vol.88 (315), p.211-235 |
issn | 0025-5718 1088-6842 |
language | eng |
recordid | cdi_crossref_primary_10_1090_mcom_3369 |
source | American Mathematical Society Publications (Freely Accessible); American Mathematical Society Publications |
title | A weak Galerkin finite element scheme for the Cahn-Hilliard equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A21%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20weak%20Galerkin%20finite%20element%20scheme%20for%20the%20Cahn-Hilliard%20equation&rft.jtitle=Mathematics%20of%20computation&rft.au=WANG,%20JUNPING&rft.date=2019-01-01&rft.volume=88&rft.issue=315&rft.spage=211&rft.epage=235&rft.pages=211-235&rft.issn=0025-5718&rft.eissn=1088-6842&rft_id=info:doi/10.1090/mcom/3369&rft_dat=%3Cjstor_cross%3E90025033%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=90025033&rfr_iscdi=true |