A weak Galerkin finite element scheme for the Cahn-Hilliard equation

This article presents a weak Galerkin (WG) finite element method for the Cahn-Hilliard equation. The WG method makes use of piecewise polynomials as approximating functions, with weakly defined partial derivatives (first and second order) computed locally by using the information in the interior and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of computation 2019-01, Vol.88 (315), p.211-235
Hauptverfasser: WANG, JUNPING, ZHAI, QILONG, ZHANG, RAN, ZHANG, SHANGYOU
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 235
container_issue 315
container_start_page 211
container_title Mathematics of computation
container_volume 88
creator WANG, JUNPING
ZHAI, QILONG
ZHANG, RAN
ZHANG, SHANGYOU
description This article presents a weak Galerkin (WG) finite element method for the Cahn-Hilliard equation. The WG method makes use of piecewise polynomials as approximating functions, with weakly defined partial derivatives (first and second order) computed locally by using the information in the interior and on the boundary of each element. A stabilizer is constructed and added to the numerical scheme for the purpose of providing certain weak continuities for the approximating function. A mathematical convergence theory is developed for the corresponding numerical solutions, and optimal order of error estimates are derived. Some numerical results are presented to illustrate the efficiency and accuracy of the method.
doi_str_mv 10.1090/mcom/3369
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_mcom_3369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90025033</jstor_id><sourcerecordid>90025033</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-4ec31d735b7dc41b0d79f810d44e36ffa10b837013774b91681793e9990d9543</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoOFYX_gAhCzcuxr7XZCbJslRthYKb7ofMzAtNOx-ajIj_3g4jLl29C_dw4TzGbhEeEQzM26pv50Lk5owlCFqnuZaLc5YALLI0U6gv2VWMBwDAPFMJe1ryL7JHvrYNhaPvuPOdH4hTQy11A4_V_hS46wMf9sRXdt-lG9803oaa08enHXzfXbMLZ5tIN793xnYvz7vVJt2-rV9Xy21qBWZDKqkSWCuRlaquJJZQK-M0Qi0lidw5i1BqoQCFUrI0mGtURpAxBmqTSTFjD9NsFfoYA7niPfjWhu8CoRjti9G-GO1P7N3EHuLQhz_QjH8AIU79_dTbNv4z8wNna2F6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A weak Galerkin finite element scheme for the Cahn-Hilliard equation</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>American Mathematical Society Publications</source><creator>WANG, JUNPING ; ZHAI, QILONG ; ZHANG, RAN ; ZHANG, SHANGYOU</creator><creatorcontrib>WANG, JUNPING ; ZHAI, QILONG ; ZHANG, RAN ; ZHANG, SHANGYOU</creatorcontrib><description>This article presents a weak Galerkin (WG) finite element method for the Cahn-Hilliard equation. The WG method makes use of piecewise polynomials as approximating functions, with weakly defined partial derivatives (first and second order) computed locally by using the information in the interior and on the boundary of each element. A stabilizer is constructed and added to the numerical scheme for the purpose of providing certain weak continuities for the approximating function. A mathematical convergence theory is developed for the corresponding numerical solutions, and optimal order of error estimates are derived. Some numerical results are presented to illustrate the efficiency and accuracy of the method.</description><identifier>ISSN: 0025-5718</identifier><identifier>EISSN: 1088-6842</identifier><identifier>DOI: 10.1090/mcom/3369</identifier><language>eng</language><publisher>American Mathematical Society</publisher><ispartof>Mathematics of computation, 2019-01, Vol.88 (315), p.211-235</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-4ec31d735b7dc41b0d79f810d44e36ffa10b837013774b91681793e9990d9543</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/mcom/2019-88-315/S0025-5718-2018-03369-5/S0025-5718-2018-03369-5.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/mcom/2019-88-315/S0025-5718-2018-03369-5/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,776,780,23304,23308,27903,27904,77583,77585,77593,77595</link.rule.ids></links><search><creatorcontrib>WANG, JUNPING</creatorcontrib><creatorcontrib>ZHAI, QILONG</creatorcontrib><creatorcontrib>ZHANG, RAN</creatorcontrib><creatorcontrib>ZHANG, SHANGYOU</creatorcontrib><title>A weak Galerkin finite element scheme for the Cahn-Hilliard equation</title><title>Mathematics of computation</title><description>This article presents a weak Galerkin (WG) finite element method for the Cahn-Hilliard equation. The WG method makes use of piecewise polynomials as approximating functions, with weakly defined partial derivatives (first and second order) computed locally by using the information in the interior and on the boundary of each element. A stabilizer is constructed and added to the numerical scheme for the purpose of providing certain weak continuities for the approximating function. A mathematical convergence theory is developed for the corresponding numerical solutions, and optimal order of error estimates are derived. Some numerical results are presented to illustrate the efficiency and accuracy of the method.</description><issn>0025-5718</issn><issn>1088-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoOFYX_gAhCzcuxr7XZCbJslRthYKb7ofMzAtNOx-ajIj_3g4jLl29C_dw4TzGbhEeEQzM26pv50Lk5owlCFqnuZaLc5YALLI0U6gv2VWMBwDAPFMJe1ryL7JHvrYNhaPvuPOdH4hTQy11A4_V_hS46wMf9sRXdt-lG9803oaa08enHXzfXbMLZ5tIN793xnYvz7vVJt2-rV9Xy21qBWZDKqkSWCuRlaquJJZQK-M0Qi0lidw5i1BqoQCFUrI0mGtURpAxBmqTSTFjD9NsFfoYA7niPfjWhu8CoRjti9G-GO1P7N3EHuLQhz_QjH8AIU79_dTbNv4z8wNna2F6</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>WANG, JUNPING</creator><creator>ZHAI, QILONG</creator><creator>ZHANG, RAN</creator><creator>ZHANG, SHANGYOU</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190101</creationdate><title>A weak Galerkin finite element scheme for the Cahn-Hilliard equation</title><author>WANG, JUNPING ; ZHAI, QILONG ; ZHANG, RAN ; ZHANG, SHANGYOU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-4ec31d735b7dc41b0d79f810d44e36ffa10b837013774b91681793e9990d9543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WANG, JUNPING</creatorcontrib><creatorcontrib>ZHAI, QILONG</creatorcontrib><creatorcontrib>ZHANG, RAN</creatorcontrib><creatorcontrib>ZHANG, SHANGYOU</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematics of computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WANG, JUNPING</au><au>ZHAI, QILONG</au><au>ZHANG, RAN</au><au>ZHANG, SHANGYOU</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A weak Galerkin finite element scheme for the Cahn-Hilliard equation</atitle><jtitle>Mathematics of computation</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>88</volume><issue>315</issue><spage>211</spage><epage>235</epage><pages>211-235</pages><issn>0025-5718</issn><eissn>1088-6842</eissn><abstract>This article presents a weak Galerkin (WG) finite element method for the Cahn-Hilliard equation. The WG method makes use of piecewise polynomials as approximating functions, with weakly defined partial derivatives (first and second order) computed locally by using the information in the interior and on the boundary of each element. A stabilizer is constructed and added to the numerical scheme for the purpose of providing certain weak continuities for the approximating function. A mathematical convergence theory is developed for the corresponding numerical solutions, and optimal order of error estimates are derived. Some numerical results are presented to illustrate the efficiency and accuracy of the method.</abstract><pub>American Mathematical Society</pub><doi>10.1090/mcom/3369</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5718
ispartof Mathematics of computation, 2019-01, Vol.88 (315), p.211-235
issn 0025-5718
1088-6842
language eng
recordid cdi_crossref_primary_10_1090_mcom_3369
source American Mathematical Society Publications (Freely Accessible); American Mathematical Society Publications
title A weak Galerkin finite element scheme for the Cahn-Hilliard equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A21%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20weak%20Galerkin%20finite%20element%20scheme%20for%20the%20Cahn-Hilliard%20equation&rft.jtitle=Mathematics%20of%20computation&rft.au=WANG,%20JUNPING&rft.date=2019-01-01&rft.volume=88&rft.issue=315&rft.spage=211&rft.epage=235&rft.pages=211-235&rft.issn=0025-5718&rft.eissn=1088-6842&rft_id=info:doi/10.1090/mcom/3369&rft_dat=%3Cjstor_cross%3E90025033%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=90025033&rfr_iscdi=true