A nonconforming Crouzeix-Raviart type finite element on polygonal meshes

A nonconforming lowest order Crouzeix-Raviart type finite element, based on the generalized barycentric coordinates, is constructed on general polygonal (convex or nonconvex) meshes. We reveal a fundamental difference of the Crouzeix-Raviart type degrees of freedom between polygons with odd and even...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of computation 2019-01, Vol.88 (315), p.237-271
1. Verfasser: Wang, Yanqiu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 271
container_issue 315
container_start_page 237
container_title Mathematics of computation
container_volume 88
creator Wang, Yanqiu
description A nonconforming lowest order Crouzeix-Raviart type finite element, based on the generalized barycentric coordinates, is constructed on general polygonal (convex or nonconvex) meshes. We reveal a fundamental difference of the Crouzeix-Raviart type degrees of freedom between polygons with odd and even number of vertices, which results in slightly different local constructions of finite elements on these two types of polygons. Because of this, the topological structure of connected regions consisting of polygons with even number of vertices plays an essential role in understanding the global finite element space. To analyze such a topological structure, a new technical tool using the concept of cochain complex and cohomology is developed. Despite the seemingly complicated theoretical analysis, implementation of the element is straightforward. The nonconforming finite element method has optimal a priori error estimates. Proof and supporting numerical results are presented.
doi_str_mv 10.1090/mcom/3334
format Article
fullrecord <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_mcom_3334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_mcom_3334</sourcerecordid><originalsourceid>FETCH-LOGICAL-a293t-26af75e91bc5e74e4005ace8966995ec66b45d2a063c6c45e4ab6069bbdd10893</originalsourceid><addsrcrecordid>eNp9kMFKxDAURYMoWEcX_kEWblzUeWmTtFkORR1hQBBdlzR9HStNUpIq1q93yrh2dTeHC-cQcs3gjoGCtTXervM85yckYVCWqSx5dkoSgEykomDlObmI8QMAmBRFQrYb6rwz3nU-2N7taRX85w_23-mL_up1mOg0j0i73vUTUhzQopuod3T0w7z3Tg_UYnzHeEnOOj1EvPrbFXl7uH-ttunu-fGp2uxSnal8SjOpu0KgYo0RWHDkAEIbLJWUSgk0UjZctJkGmRtpuECuGwlSNU3bHnxUviK3x18TfIwBu3oMvdVhrhnUS4J6SVAvCQ7szZHVNv6D_QJH5Vvs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A nonconforming Crouzeix-Raviart type finite element on polygonal meshes</title><source>American Mathematical Society Publications</source><creator>Wang, Yanqiu</creator><creatorcontrib>Wang, Yanqiu</creatorcontrib><description>A nonconforming lowest order Crouzeix-Raviart type finite element, based on the generalized barycentric coordinates, is constructed on general polygonal (convex or nonconvex) meshes. We reveal a fundamental difference of the Crouzeix-Raviart type degrees of freedom between polygons with odd and even number of vertices, which results in slightly different local constructions of finite elements on these two types of polygons. Because of this, the topological structure of connected regions consisting of polygons with even number of vertices plays an essential role in understanding the global finite element space. To analyze such a topological structure, a new technical tool using the concept of cochain complex and cohomology is developed. Despite the seemingly complicated theoretical analysis, implementation of the element is straightforward. The nonconforming finite element method has optimal a priori error estimates. Proof and supporting numerical results are presented.</description><identifier>ISSN: 0025-5718</identifier><identifier>EISSN: 1088-6842</identifier><identifier>DOI: 10.1090/mcom/3334</identifier><language>eng</language><ispartof>Mathematics of computation, 2019-01, Vol.88 (315), p.237-271</ispartof><rights>Copyright 2018, American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a293t-26af75e91bc5e74e4005ace8966995ec66b45d2a063c6c45e4ab6069bbdd10893</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/mcom/2019-88-315/S0025-5718-2018-03334-8/S0025-5718-2018-03334-8.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/mcom/2019-88-315/S0025-5718-2018-03334-8/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,315,781,785,23333,27929,27930,77841,77851</link.rule.ids></links><search><creatorcontrib>Wang, Yanqiu</creatorcontrib><title>A nonconforming Crouzeix-Raviart type finite element on polygonal meshes</title><title>Mathematics of computation</title><description>A nonconforming lowest order Crouzeix-Raviart type finite element, based on the generalized barycentric coordinates, is constructed on general polygonal (convex or nonconvex) meshes. We reveal a fundamental difference of the Crouzeix-Raviart type degrees of freedom between polygons with odd and even number of vertices, which results in slightly different local constructions of finite elements on these two types of polygons. Because of this, the topological structure of connected regions consisting of polygons with even number of vertices plays an essential role in understanding the global finite element space. To analyze such a topological structure, a new technical tool using the concept of cochain complex and cohomology is developed. Despite the seemingly complicated theoretical analysis, implementation of the element is straightforward. The nonconforming finite element method has optimal a priori error estimates. Proof and supporting numerical results are presented.</description><issn>0025-5718</issn><issn>1088-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAURYMoWEcX_kEWblzUeWmTtFkORR1hQBBdlzR9HStNUpIq1q93yrh2dTeHC-cQcs3gjoGCtTXervM85yckYVCWqSx5dkoSgEykomDlObmI8QMAmBRFQrYb6rwz3nU-2N7taRX85w_23-mL_up1mOg0j0i73vUTUhzQopuod3T0w7z3Tg_UYnzHeEnOOj1EvPrbFXl7uH-ttunu-fGp2uxSnal8SjOpu0KgYo0RWHDkAEIbLJWUSgk0UjZctJkGmRtpuECuGwlSNU3bHnxUviK3x18TfIwBu3oMvdVhrhnUS4J6SVAvCQ7szZHVNv6D_QJH5Vvs</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Wang, Yanqiu</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190101</creationdate><title>A nonconforming Crouzeix-Raviart type finite element on polygonal meshes</title><author>Wang, Yanqiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a293t-26af75e91bc5e74e4005ace8966995ec66b45d2a063c6c45e4ab6069bbdd10893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yanqiu</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematics of computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yanqiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A nonconforming Crouzeix-Raviart type finite element on polygonal meshes</atitle><jtitle>Mathematics of computation</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>88</volume><issue>315</issue><spage>237</spage><epage>271</epage><pages>237-271</pages><issn>0025-5718</issn><eissn>1088-6842</eissn><abstract>A nonconforming lowest order Crouzeix-Raviart type finite element, based on the generalized barycentric coordinates, is constructed on general polygonal (convex or nonconvex) meshes. We reveal a fundamental difference of the Crouzeix-Raviart type degrees of freedom between polygons with odd and even number of vertices, which results in slightly different local constructions of finite elements on these two types of polygons. Because of this, the topological structure of connected regions consisting of polygons with even number of vertices plays an essential role in understanding the global finite element space. To analyze such a topological structure, a new technical tool using the concept of cochain complex and cohomology is developed. Despite the seemingly complicated theoretical analysis, implementation of the element is straightforward. The nonconforming finite element method has optimal a priori error estimates. Proof and supporting numerical results are presented.</abstract><doi>10.1090/mcom/3334</doi><tpages>35</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5718
ispartof Mathematics of computation, 2019-01, Vol.88 (315), p.237-271
issn 0025-5718
1088-6842
language eng
recordid cdi_crossref_primary_10_1090_mcom_3334
source American Mathematical Society Publications
title A nonconforming Crouzeix-Raviart type finite element on polygonal meshes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T11%3A44%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20nonconforming%20Crouzeix-Raviart%20type%20finite%20element%20on%20polygonal%20meshes&rft.jtitle=Mathematics%20of%20computation&rft.au=Wang,%20Yanqiu&rft.date=2019-01-01&rft.volume=88&rft.issue=315&rft.spage=237&rft.epage=271&rft.pages=237-271&rft.issn=0025-5718&rft.eissn=1088-6842&rft_id=info:doi/10.1090/mcom/3334&rft_dat=%3Cams_cross%3E10_1090_mcom_3334%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true