Convergence of adaptive discontinuous Galerkin methods

We develop a general convergence theory for adaptive discontinuous Galerkin methods for elliptic PDEs covering the popular SIPG, NIPG and LDG schemes as well as all practically relevant marking strategies. Another key feature of the presented result is, that it holds for penalty parameters only nece...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of computation 2018-11, Vol.87 (314), p.2611-2640
Hauptverfasser: KREUZER, CHRISTIAN, GEORGOULIS, EMMANUIL H.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2640
container_issue 314
container_start_page 2611
container_title Mathematics of computation
container_volume 87
creator KREUZER, CHRISTIAN
GEORGOULIS, EMMANUIL H.
description We develop a general convergence theory for adaptive discontinuous Galerkin methods for elliptic PDEs covering the popular SIPG, NIPG and LDG schemes as well as all practically relevant marking strategies. Another key feature of the presented result is, that it holds for penalty parameters only necessary for the standard analysis of the respective scheme. The analysis is based on a quasi-interpolation into a newly developed limit space of the adaptively created non-conforming discrete spaces, which enables us to generalise the basic convergence result for conforming adaptive finite element methods by Morin, Siebert, and Veeser [ A basic convergence result for conforming adaptive finite elements , Math. Models Methods Appl. Sci., 2008, 18(5), 707-737].
doi_str_mv 10.1090/mcom/3318
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_mcom_3318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90023872</jstor_id><sourcerecordid>90023872</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-70eb59758690ae3c4ae40a9a3d2a61232dcabf2c45862c54336b2c360bffcc493</originalsourceid><addsrcrecordid>eNp9j71KxEAURgdRMK4WPoCQwsYi7p3fzJQSdBUWbLQON5MZzbrJLDPZBd_ehBVLq6_4DgcOIdcU7ikYWPY29EvOqT4hGQWtC6UFOyUZAJOFLKk-JxcpbQCAKllmRFVhOLj44Qbr8uBzbHE3dgeXt12yYRi7YR_2KV_h1sWvbsh7N36GNl2SM4_b5K5-d0Henx7fqudi_bp6qR7WBXIqx6IE10hTSq0MoONWoBOABnnLUFHGWWux8cyKiWBWCs5VwyxX0HhvrTB8Qe6OXhtDStH5ehe7HuN3TaGeg-s5uJ6DJ_bmyG7SGOIfaKZ0rks2_bfHH_v0j-YHNaVe3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Convergence of adaptive discontinuous Galerkin methods</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>American Mathematical Society Publications</source><creator>KREUZER, CHRISTIAN ; GEORGOULIS, EMMANUIL H.</creator><creatorcontrib>KREUZER, CHRISTIAN ; GEORGOULIS, EMMANUIL H.</creatorcontrib><description>We develop a general convergence theory for adaptive discontinuous Galerkin methods for elliptic PDEs covering the popular SIPG, NIPG and LDG schemes as well as all practically relevant marking strategies. Another key feature of the presented result is, that it holds for penalty parameters only necessary for the standard analysis of the respective scheme. The analysis is based on a quasi-interpolation into a newly developed limit space of the adaptively created non-conforming discrete spaces, which enables us to generalise the basic convergence result for conforming adaptive finite element methods by Morin, Siebert, and Veeser [ A basic convergence result for conforming adaptive finite elements , Math. Models Methods Appl. Sci., 2008, 18(5), 707-737].</description><identifier>ISSN: 0025-5718</identifier><identifier>EISSN: 1088-6842</identifier><identifier>DOI: 10.1090/mcom/3318</identifier><language>eng</language><publisher>American Mathematical Society</publisher><ispartof>Mathematics of computation, 2018-11, Vol.87 (314), p.2611-2640</ispartof><rights>Copyright 2018, American Mathematical Society</rights><rights>2018 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-70eb59758690ae3c4ae40a9a3d2a61232dcabf2c45862c54336b2c360bffcc493</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/mcom/2018-87-314/S0025-5718-2018-03318-X/S0025-5718-2018-03318-X.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/mcom/2018-87-314/S0025-5718-2018-03318-X/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,315,781,785,804,833,23329,23333,27929,27930,58022,58026,58255,58259,77841,77843,77851,77853</link.rule.ids></links><search><creatorcontrib>KREUZER, CHRISTIAN</creatorcontrib><creatorcontrib>GEORGOULIS, EMMANUIL H.</creatorcontrib><title>Convergence of adaptive discontinuous Galerkin methods</title><title>Mathematics of computation</title><description>We develop a general convergence theory for adaptive discontinuous Galerkin methods for elliptic PDEs covering the popular SIPG, NIPG and LDG schemes as well as all practically relevant marking strategies. Another key feature of the presented result is, that it holds for penalty parameters only necessary for the standard analysis of the respective scheme. The analysis is based on a quasi-interpolation into a newly developed limit space of the adaptively created non-conforming discrete spaces, which enables us to generalise the basic convergence result for conforming adaptive finite element methods by Morin, Siebert, and Veeser [ A basic convergence result for conforming adaptive finite elements , Math. Models Methods Appl. Sci., 2008, 18(5), 707-737].</description><issn>0025-5718</issn><issn>1088-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9j71KxEAURgdRMK4WPoCQwsYi7p3fzJQSdBUWbLQON5MZzbrJLDPZBd_ehBVLq6_4DgcOIdcU7ikYWPY29EvOqT4hGQWtC6UFOyUZAJOFLKk-JxcpbQCAKllmRFVhOLj44Qbr8uBzbHE3dgeXt12yYRi7YR_2KV_h1sWvbsh7N36GNl2SM4_b5K5-d0Henx7fqudi_bp6qR7WBXIqx6IE10hTSq0MoONWoBOABnnLUFHGWWux8cyKiWBWCs5VwyxX0HhvrTB8Qe6OXhtDStH5ehe7HuN3TaGeg-s5uJ6DJ_bmyG7SGOIfaKZ0rks2_bfHH_v0j-YHNaVe3A</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>KREUZER, CHRISTIAN</creator><creator>GEORGOULIS, EMMANUIL H.</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181101</creationdate><title>Convergence of adaptive discontinuous Galerkin methods</title><author>KREUZER, CHRISTIAN ; GEORGOULIS, EMMANUIL H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-70eb59758690ae3c4ae40a9a3d2a61232dcabf2c45862c54336b2c360bffcc493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KREUZER, CHRISTIAN</creatorcontrib><creatorcontrib>GEORGOULIS, EMMANUIL H.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematics of computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KREUZER, CHRISTIAN</au><au>GEORGOULIS, EMMANUIL H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence of adaptive discontinuous Galerkin methods</atitle><jtitle>Mathematics of computation</jtitle><date>2018-11-01</date><risdate>2018</risdate><volume>87</volume><issue>314</issue><spage>2611</spage><epage>2640</epage><pages>2611-2640</pages><issn>0025-5718</issn><eissn>1088-6842</eissn><abstract>We develop a general convergence theory for adaptive discontinuous Galerkin methods for elliptic PDEs covering the popular SIPG, NIPG and LDG schemes as well as all practically relevant marking strategies. Another key feature of the presented result is, that it holds for penalty parameters only necessary for the standard analysis of the respective scheme. The analysis is based on a quasi-interpolation into a newly developed limit space of the adaptively created non-conforming discrete spaces, which enables us to generalise the basic convergence result for conforming adaptive finite element methods by Morin, Siebert, and Veeser [ A basic convergence result for conforming adaptive finite elements , Math. Models Methods Appl. Sci., 2008, 18(5), 707-737].</abstract><pub>American Mathematical Society</pub><doi>10.1090/mcom/3318</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5718
ispartof Mathematics of computation, 2018-11, Vol.87 (314), p.2611-2640
issn 0025-5718
1088-6842
language eng
recordid cdi_crossref_primary_10_1090_mcom_3318
source American Mathematical Society Publications (Freely Accessible); JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; American Mathematical Society Publications
title Convergence of adaptive discontinuous Galerkin methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T03%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20of%20adaptive%20discontinuous%20Galerkin%20methods&rft.jtitle=Mathematics%20of%20computation&rft.au=KREUZER,%20CHRISTIAN&rft.date=2018-11-01&rft.volume=87&rft.issue=314&rft.spage=2611&rft.epage=2640&rft.pages=2611-2640&rft.issn=0025-5718&rft.eissn=1088-6842&rft_id=info:doi/10.1090/mcom/3318&rft_dat=%3Cjstor_cross%3E90023872%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=90023872&rfr_iscdi=true