Convergence of adaptive discontinuous Galerkin methods
We develop a general convergence theory for adaptive discontinuous Galerkin methods for elliptic PDEs covering the popular SIPG, NIPG and LDG schemes as well as all practically relevant marking strategies. Another key feature of the presented result is, that it holds for penalty parameters only nece...
Gespeichert in:
Veröffentlicht in: | Mathematics of computation 2018-11, Vol.87 (314), p.2611-2640 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2640 |
---|---|
container_issue | 314 |
container_start_page | 2611 |
container_title | Mathematics of computation |
container_volume | 87 |
creator | KREUZER, CHRISTIAN GEORGOULIS, EMMANUIL H. |
description | We develop a general convergence theory for adaptive discontinuous Galerkin methods for elliptic PDEs covering the popular SIPG, NIPG and LDG schemes as well as all practically relevant marking strategies. Another key feature of the presented result is, that it holds for penalty parameters only necessary for the standard analysis of the respective scheme. The analysis is based on a quasi-interpolation into a newly developed limit space of the adaptively created non-conforming discrete spaces, which enables us to generalise the basic convergence result for conforming adaptive finite element methods by Morin, Siebert, and Veeser [ A basic convergence result for conforming adaptive finite elements , Math. Models Methods Appl. Sci., 2008, 18(5), 707-737]. |
doi_str_mv | 10.1090/mcom/3318 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_mcom_3318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90023872</jstor_id><sourcerecordid>90023872</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-70eb59758690ae3c4ae40a9a3d2a61232dcabf2c45862c54336b2c360bffcc493</originalsourceid><addsrcrecordid>eNp9j71KxEAURgdRMK4WPoCQwsYi7p3fzJQSdBUWbLQON5MZzbrJLDPZBd_ehBVLq6_4DgcOIdcU7ikYWPY29EvOqT4hGQWtC6UFOyUZAJOFLKk-JxcpbQCAKllmRFVhOLj44Qbr8uBzbHE3dgeXt12yYRi7YR_2KV_h1sWvbsh7N36GNl2SM4_b5K5-d0Henx7fqudi_bp6qR7WBXIqx6IE10hTSq0MoONWoBOABnnLUFHGWWux8cyKiWBWCs5VwyxX0HhvrTB8Qe6OXhtDStH5ehe7HuN3TaGeg-s5uJ6DJ_bmyG7SGOIfaKZ0rks2_bfHH_v0j-YHNaVe3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Convergence of adaptive discontinuous Galerkin methods</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>American Mathematical Society Publications</source><creator>KREUZER, CHRISTIAN ; GEORGOULIS, EMMANUIL H.</creator><creatorcontrib>KREUZER, CHRISTIAN ; GEORGOULIS, EMMANUIL H.</creatorcontrib><description>We develop a general convergence theory for adaptive discontinuous Galerkin methods for elliptic PDEs covering the popular SIPG, NIPG and LDG schemes as well as all practically relevant marking strategies. Another key feature of the presented result is, that it holds for penalty parameters only necessary for the standard analysis of the respective scheme. The analysis is based on a quasi-interpolation into a newly developed limit space of the adaptively created non-conforming discrete spaces, which enables us to generalise the basic convergence result for conforming adaptive finite element methods by Morin, Siebert, and Veeser [ A basic convergence result for conforming adaptive finite elements , Math. Models Methods Appl. Sci., 2008, 18(5), 707-737].</description><identifier>ISSN: 0025-5718</identifier><identifier>EISSN: 1088-6842</identifier><identifier>DOI: 10.1090/mcom/3318</identifier><language>eng</language><publisher>American Mathematical Society</publisher><ispartof>Mathematics of computation, 2018-11, Vol.87 (314), p.2611-2640</ispartof><rights>Copyright 2018, American Mathematical Society</rights><rights>2018 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-70eb59758690ae3c4ae40a9a3d2a61232dcabf2c45862c54336b2c360bffcc493</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/mcom/2018-87-314/S0025-5718-2018-03318-X/S0025-5718-2018-03318-X.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/mcom/2018-87-314/S0025-5718-2018-03318-X/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,315,781,785,804,833,23329,23333,27929,27930,58022,58026,58255,58259,77841,77843,77851,77853</link.rule.ids></links><search><creatorcontrib>KREUZER, CHRISTIAN</creatorcontrib><creatorcontrib>GEORGOULIS, EMMANUIL H.</creatorcontrib><title>Convergence of adaptive discontinuous Galerkin methods</title><title>Mathematics of computation</title><description>We develop a general convergence theory for adaptive discontinuous Galerkin methods for elliptic PDEs covering the popular SIPG, NIPG and LDG schemes as well as all practically relevant marking strategies. Another key feature of the presented result is, that it holds for penalty parameters only necessary for the standard analysis of the respective scheme. The analysis is based on a quasi-interpolation into a newly developed limit space of the adaptively created non-conforming discrete spaces, which enables us to generalise the basic convergence result for conforming adaptive finite element methods by Morin, Siebert, and Veeser [ A basic convergence result for conforming adaptive finite elements , Math. Models Methods Appl. Sci., 2008, 18(5), 707-737].</description><issn>0025-5718</issn><issn>1088-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9j71KxEAURgdRMK4WPoCQwsYi7p3fzJQSdBUWbLQON5MZzbrJLDPZBd_ehBVLq6_4DgcOIdcU7ikYWPY29EvOqT4hGQWtC6UFOyUZAJOFLKk-JxcpbQCAKllmRFVhOLj44Qbr8uBzbHE3dgeXt12yYRi7YR_2KV_h1sWvbsh7N36GNl2SM4_b5K5-d0Henx7fqudi_bp6qR7WBXIqx6IE10hTSq0MoONWoBOABnnLUFHGWWux8cyKiWBWCs5VwyxX0HhvrTB8Qe6OXhtDStH5ehe7HuN3TaGeg-s5uJ6DJ_bmyG7SGOIfaKZ0rks2_bfHH_v0j-YHNaVe3A</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>KREUZER, CHRISTIAN</creator><creator>GEORGOULIS, EMMANUIL H.</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181101</creationdate><title>Convergence of adaptive discontinuous Galerkin methods</title><author>KREUZER, CHRISTIAN ; GEORGOULIS, EMMANUIL H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-70eb59758690ae3c4ae40a9a3d2a61232dcabf2c45862c54336b2c360bffcc493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KREUZER, CHRISTIAN</creatorcontrib><creatorcontrib>GEORGOULIS, EMMANUIL H.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematics of computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KREUZER, CHRISTIAN</au><au>GEORGOULIS, EMMANUIL H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence of adaptive discontinuous Galerkin methods</atitle><jtitle>Mathematics of computation</jtitle><date>2018-11-01</date><risdate>2018</risdate><volume>87</volume><issue>314</issue><spage>2611</spage><epage>2640</epage><pages>2611-2640</pages><issn>0025-5718</issn><eissn>1088-6842</eissn><abstract>We develop a general convergence theory for adaptive discontinuous Galerkin methods for elliptic PDEs covering the popular SIPG, NIPG and LDG schemes as well as all practically relevant marking strategies. Another key feature of the presented result is, that it holds for penalty parameters only necessary for the standard analysis of the respective scheme. The analysis is based on a quasi-interpolation into a newly developed limit space of the adaptively created non-conforming discrete spaces, which enables us to generalise the basic convergence result for conforming adaptive finite element methods by Morin, Siebert, and Veeser [ A basic convergence result for conforming adaptive finite elements , Math. Models Methods Appl. Sci., 2008, 18(5), 707-737].</abstract><pub>American Mathematical Society</pub><doi>10.1090/mcom/3318</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5718 |
ispartof | Mathematics of computation, 2018-11, Vol.87 (314), p.2611-2640 |
issn | 0025-5718 1088-6842 |
language | eng |
recordid | cdi_crossref_primary_10_1090_mcom_3318 |
source | American Mathematical Society Publications (Freely Accessible); JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; American Mathematical Society Publications |
title | Convergence of adaptive discontinuous Galerkin methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T03%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20of%20adaptive%20discontinuous%20Galerkin%20methods&rft.jtitle=Mathematics%20of%20computation&rft.au=KREUZER,%20CHRISTIAN&rft.date=2018-11-01&rft.volume=87&rft.issue=314&rft.spage=2611&rft.epage=2640&rft.pages=2611-2640&rft.issn=0025-5718&rft.eissn=1088-6842&rft_id=info:doi/10.1090/mcom/3318&rft_dat=%3Cjstor_cross%3E90023872%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=90023872&rfr_iscdi=true |