Normal forms and moduli stacks for logarithmic flat connections

We establish normal form theorems for a large class of singular flat connections on complex manifolds, including connections with logarithmic poles along weighted homogeneous Saito free divisors. As a result, we show that the moduli spaces of such connections admit the structure of algebraic quotien...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebraic geometry 2024-09
1. Verfasser: Bischoff, Francis
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of algebraic geometry
container_volume
creator Bischoff, Francis
description We establish normal form theorems for a large class of singular flat connections on complex manifolds, including connections with logarithmic poles along weighted homogeneous Saito free divisors. As a result, we show that the moduli spaces of such connections admit the structure of algebraic quotient stacks. In order to prove these results, we introduce homogeneous Lie groupoids and study their representation theory. In this direction, we prove two main results: a Jordan–Chevalley decomposition theorem and a linearization theorem. We give explicit normal forms for several examples of free divisors, such as homogeneous plane curves, reductive free divisors, and one of Sekiguchi’s free divisors.
doi_str_mv 10.1090/jag/837
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1090_jag_837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_jag_837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c150t-c546f0a49b92c78f9c148c99258b9fe5f8016f6b3c8a01b7beef6b201ae9a4ee3</originalsourceid><addsrcrecordid>eNotj8FOwzAQRC0EEqUgfsE3TqG7sZ3YJ4QqKEgVXOAcbbZ2SUliZIcDf08qOL2ZOYz0hLhGuEVwsDrQfmVVfSIWaJQuam2r0zmDqQrlEM_FRc4HgBLR6IW4e4lpoF6GGVnSuJND3H33ncwT8Wc-7rKPe0rd9DF0LENPk-Q4jp6nLo75UpwF6rO_-udSvD8-vK2fiu3r5nl9vy0YDUwFG10FIO1aV3Jtg2PUlp0rjW1d8CZYwCpUrWJLgG3dej-3EpC8I-29Woqbv19OMefkQ_OVuoHST4PQHL2b2buZvdUvjz5L3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Normal forms and moduli stacks for logarithmic flat connections</title><source>American Mathematical Society Publications</source><creator>Bischoff, Francis</creator><creatorcontrib>Bischoff, Francis</creatorcontrib><description>We establish normal form theorems for a large class of singular flat connections on complex manifolds, including connections with logarithmic poles along weighted homogeneous Saito free divisors. As a result, we show that the moduli spaces of such connections admit the structure of algebraic quotient stacks. In order to prove these results, we introduce homogeneous Lie groupoids and study their representation theory. In this direction, we prove two main results: a Jordan–Chevalley decomposition theorem and a linearization theorem. We give explicit normal forms for several examples of free divisors, such as homogeneous plane curves, reductive free divisors, and one of Sekiguchi’s free divisors.</description><identifier>ISSN: 1056-3911</identifier><identifier>EISSN: 1534-7486</identifier><identifier>DOI: 10.1090/jag/837</identifier><language>eng</language><ispartof>Journal of algebraic geometry, 2024-09</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c150t-c546f0a49b92c78f9c148c99258b9fe5f8016f6b3c8a01b7beef6b201ae9a4ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Bischoff, Francis</creatorcontrib><title>Normal forms and moduli stacks for logarithmic flat connections</title><title>Journal of algebraic geometry</title><description>We establish normal form theorems for a large class of singular flat connections on complex manifolds, including connections with logarithmic poles along weighted homogeneous Saito free divisors. As a result, we show that the moduli spaces of such connections admit the structure of algebraic quotient stacks. In order to prove these results, we introduce homogeneous Lie groupoids and study their representation theory. In this direction, we prove two main results: a Jordan–Chevalley decomposition theorem and a linearization theorem. We give explicit normal forms for several examples of free divisors, such as homogeneous plane curves, reductive free divisors, and one of Sekiguchi’s free divisors.</description><issn>1056-3911</issn><issn>1534-7486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotj8FOwzAQRC0EEqUgfsE3TqG7sZ3YJ4QqKEgVXOAcbbZ2SUliZIcDf08qOL2ZOYz0hLhGuEVwsDrQfmVVfSIWaJQuam2r0zmDqQrlEM_FRc4HgBLR6IW4e4lpoF6GGVnSuJND3H33ncwT8Wc-7rKPe0rd9DF0LENPk-Q4jp6nLo75UpwF6rO_-udSvD8-vK2fiu3r5nl9vy0YDUwFG10FIO1aV3Jtg2PUlp0rjW1d8CZYwCpUrWJLgG3dej-3EpC8I-29Woqbv19OMefkQ_OVuoHST4PQHL2b2buZvdUvjz5L3g</recordid><startdate>20240913</startdate><enddate>20240913</enddate><creator>Bischoff, Francis</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240913</creationdate><title>Normal forms and moduli stacks for logarithmic flat connections</title><author>Bischoff, Francis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c150t-c546f0a49b92c78f9c148c99258b9fe5f8016f6b3c8a01b7beef6b201ae9a4ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bischoff, Francis</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of algebraic geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bischoff, Francis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Normal forms and moduli stacks for logarithmic flat connections</atitle><jtitle>Journal of algebraic geometry</jtitle><date>2024-09-13</date><risdate>2024</risdate><issn>1056-3911</issn><eissn>1534-7486</eissn><abstract>We establish normal form theorems for a large class of singular flat connections on complex manifolds, including connections with logarithmic poles along weighted homogeneous Saito free divisors. As a result, we show that the moduli spaces of such connections admit the structure of algebraic quotient stacks. In order to prove these results, we introduce homogeneous Lie groupoids and study their representation theory. In this direction, we prove two main results: a Jordan–Chevalley decomposition theorem and a linearization theorem. We give explicit normal forms for several examples of free divisors, such as homogeneous plane curves, reductive free divisors, and one of Sekiguchi’s free divisors.</abstract><doi>10.1090/jag/837</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1056-3911
ispartof Journal of algebraic geometry, 2024-09
issn 1056-3911
1534-7486
language eng
recordid cdi_crossref_primary_10_1090_jag_837
source American Mathematical Society Publications
title Normal forms and moduli stacks for logarithmic flat connections
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T04%3A36%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Normal%20forms%20and%20moduli%20stacks%20for%20logarithmic%20flat%20connections&rft.jtitle=Journal%20of%20algebraic%20geometry&rft.au=Bischoff,%20Francis&rft.date=2024-09-13&rft.issn=1056-3911&rft.eissn=1534-7486&rft_id=info:doi/10.1090/jag/837&rft_dat=%3Ccrossref%3E10_1090_jag_837%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true