Tropical floor plans and enumeration of complex and real multi-nodal surfaces

The family of complex projective surfaces in P3\mathbb {P}^3 of degree dd having precisely δ\delta nodes as their only singularities has codimension δ\delta in the linear system |OP3(d)||{\mathcal O}_{\mathbb {P}^3}(d)| for sufficiently large dd and is of degree Nδ,CP3(d)=(4(d−1)3)δ/δ!+O(d3δ−3)N_{\d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebraic geometry 2022-04, Vol.31 (2), p.261-301
Hauptverfasser: Markwig, Hannah, Markwig, Thomas, Shaw, Kris, Shustin, Eugenii
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 301
container_issue 2
container_start_page 261
container_title Journal of algebraic geometry
container_volume 31
creator Markwig, Hannah
Markwig, Thomas
Shaw, Kris
Shustin, Eugenii
description The family of complex projective surfaces in P3\mathbb {P}^3 of degree dd having precisely δ\delta nodes as their only singularities has codimension δ\delta in the linear system |OP3(d)||{\mathcal O}_{\mathbb {P}^3}(d)| for sufficiently large dd and is of degree Nδ,CP3(d)=(4(d−1)3)δ/δ!+O(d3δ−3)N_{\delta ,\mathbb {C}}^{\mathbb {P}^3}(d)=(4(d-1)^3)^\delta /\delta !+O(d^{3\delta -3}). In particular, Nδ,CP3(d)N_{\delta ,\mathbb {C}}^{\mathbb {P}^3}(d) is polynomial in dd. By means of tropical geometry, we explicitly describe (4d3)δ/δ!+O(d3δ−1)(4d^3)^\delta /\delta !+O(d^{3\delta -1}) surfaces passing through a suitable generic configuration of n=(d+33)−δ−1n=\binom {d+3}{3}-\delta -1 points in P3\mathbb {P}^3. These surfaces are close to tropical limits which we characterize combinatorially, introducing the concept of floor plans for multinodal tropical surfaces. The concept of floor plans is similar to the well-known floor diagrams (a combinatorial tool for tropical curve counts): with it, we keep the combinatorial essentials of a multinodal tropical surface SS which are sufficient to reconstruct SS. In the real case, we estimate the range for possible numbers of real multi-nodal surfaces satisfying point conditions. We show that, for a special configuration w\boldsymbol {w} of real points, the number Nδ,RP3(d,w)N_{\delta ,\mathbb {R}}^{\mathbb {P}^3}(d,\boldsymbol {w}) of real surfaces of degree dd having δ\delta real nodes and passing through w\boldsymbol {w} is bounded from below by (32d3)δ/δ!+O(d3δ−1)\left (\frac {3}{2}d^3\right )^\delta /\delta ! +O(d^{3\delta -1}). We prove analogous statements for counts of multinodal surfaces in P1×P2\mathbb {P}^1\times \mathbb {P}^2 and P1×P1×P1\mathbb {P}^1\times \mathbb {P}^1\times \mathbb {P}^1.
doi_str_mv 10.1090/jag/774
format Article
fullrecord <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_jag_774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_jag_774</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1624-605e3dcb480d400381edc805bdb67adf0491a8a6476d6ab624d077d0b82559ad3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7iXyhuXMW5mebVpQy-YMTNuC63eUiHtCnJFPTfGx23ru6B-52z-Ai5ZnDHoIHVHj9WSvETsmCi5lRxLU9LBiFp3TB2Ti5y3gOsGRN8QV53KU69wVD5EGOqpoBjrnC0lRvnwSU89HGsoq9MHKbgPn9fyRV-mMOhp2O0Jec5eTQuX5IzjyG7q7-7JO-PD7vNM92-Pb1s7rcUmVxzKkG42pqOa7AcoNbMWaNBdLaTCq0H3jDUKLmSVmJXKhaUstDptRAN2npJbo-7JsWck_PtlPoB01fLoP2x0BYLbbFQyJsjiUP-F_oGnlxbFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tropical floor plans and enumeration of complex and real multi-nodal surfaces</title><source>American Mathematical Society Publications</source><creator>Markwig, Hannah ; Markwig, Thomas ; Shaw, Kris ; Shustin, Eugenii</creator><creatorcontrib>Markwig, Hannah ; Markwig, Thomas ; Shaw, Kris ; Shustin, Eugenii</creatorcontrib><description>The family of complex projective surfaces in P3\mathbb {P}^3 of degree dd having precisely δ\delta nodes as their only singularities has codimension δ\delta in the linear system |OP3(d)||{\mathcal O}_{\mathbb {P}^3}(d)| for sufficiently large dd and is of degree Nδ,CP3(d)=(4(d−1)3)δ/δ!+O(d3δ−3)N_{\delta ,\mathbb {C}}^{\mathbb {P}^3}(d)=(4(d-1)^3)^\delta /\delta !+O(d^{3\delta -3}). In particular, Nδ,CP3(d)N_{\delta ,\mathbb {C}}^{\mathbb {P}^3}(d) is polynomial in dd. By means of tropical geometry, we explicitly describe (4d3)δ/δ!+O(d3δ−1)(4d^3)^\delta /\delta !+O(d^{3\delta -1}) surfaces passing through a suitable generic configuration of n=(d+33)−δ−1n=\binom {d+3}{3}-\delta -1 points in P3\mathbb {P}^3. These surfaces are close to tropical limits which we characterize combinatorially, introducing the concept of floor plans for multinodal tropical surfaces. The concept of floor plans is similar to the well-known floor diagrams (a combinatorial tool for tropical curve counts): with it, we keep the combinatorial essentials of a multinodal tropical surface SS which are sufficient to reconstruct SS. In the real case, we estimate the range for possible numbers of real multi-nodal surfaces satisfying point conditions. We show that, for a special configuration w\boldsymbol {w} of real points, the number Nδ,RP3(d,w)N_{\delta ,\mathbb {R}}^{\mathbb {P}^3}(d,\boldsymbol {w}) of real surfaces of degree dd having δ\delta real nodes and passing through w\boldsymbol {w} is bounded from below by (32d3)δ/δ!+O(d3δ−1)\left (\frac {3}{2}d^3\right )^\delta /\delta ! +O(d^{3\delta -1}). We prove analogous statements for counts of multinodal surfaces in P1×P2\mathbb {P}^1\times \mathbb {P}^2 and P1×P1×P1\mathbb {P}^1\times \mathbb {P}^1\times \mathbb {P}^1.</description><identifier>ISSN: 1056-3911</identifier><identifier>EISSN: 1534-7486</identifier><identifier>DOI: 10.1090/jag/774</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Research article</subject><ispartof>Journal of algebraic geometry, 2022-04, Vol.31 (2), p.261-301</ispartof><rights>Copyright 2021 University Press, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a1624-605e3dcb480d400381edc805bdb67adf0491a8a6476d6ab624d077d0b82559ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/jag/2022-31-02/S1056-3911-2021-00774-9/S1056-3911-2021-00774-9.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/jag/2022-31-02/S1056-3911-2021-00774-9/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,776,780,23307,27901,27902,77578,77588</link.rule.ids></links><search><creatorcontrib>Markwig, Hannah</creatorcontrib><creatorcontrib>Markwig, Thomas</creatorcontrib><creatorcontrib>Shaw, Kris</creatorcontrib><creatorcontrib>Shustin, Eugenii</creatorcontrib><title>Tropical floor plans and enumeration of complex and real multi-nodal surfaces</title><title>Journal of algebraic geometry</title><addtitle>J. Algebraic Geom</addtitle><description>The family of complex projective surfaces in P3\mathbb {P}^3 of degree dd having precisely δ\delta nodes as their only singularities has codimension δ\delta in the linear system |OP3(d)||{\mathcal O}_{\mathbb {P}^3}(d)| for sufficiently large dd and is of degree Nδ,CP3(d)=(4(d−1)3)δ/δ!+O(d3δ−3)N_{\delta ,\mathbb {C}}^{\mathbb {P}^3}(d)=(4(d-1)^3)^\delta /\delta !+O(d^{3\delta -3}). In particular, Nδ,CP3(d)N_{\delta ,\mathbb {C}}^{\mathbb {P}^3}(d) is polynomial in dd. By means of tropical geometry, we explicitly describe (4d3)δ/δ!+O(d3δ−1)(4d^3)^\delta /\delta !+O(d^{3\delta -1}) surfaces passing through a suitable generic configuration of n=(d+33)−δ−1n=\binom {d+3}{3}-\delta -1 points in P3\mathbb {P}^3. These surfaces are close to tropical limits which we characterize combinatorially, introducing the concept of floor plans for multinodal tropical surfaces. The concept of floor plans is similar to the well-known floor diagrams (a combinatorial tool for tropical curve counts): with it, we keep the combinatorial essentials of a multinodal tropical surface SS which are sufficient to reconstruct SS. In the real case, we estimate the range for possible numbers of real multi-nodal surfaces satisfying point conditions. We show that, for a special configuration w\boldsymbol {w} of real points, the number Nδ,RP3(d,w)N_{\delta ,\mathbb {R}}^{\mathbb {P}^3}(d,\boldsymbol {w}) of real surfaces of degree dd having δ\delta real nodes and passing through w\boldsymbol {w} is bounded from below by (32d3)δ/δ!+O(d3δ−1)\left (\frac {3}{2}d^3\right )^\delta /\delta ! +O(d^{3\delta -1}). We prove analogous statements for counts of multinodal surfaces in P1×P2\mathbb {P}^1\times \mathbb {P}^2 and P1×P1×P1\mathbb {P}^1\times \mathbb {P}^1\times \mathbb {P}^1.</description><subject>Research article</subject><issn>1056-3911</issn><issn>1534-7486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOI7iXyhuXMW5mebVpQy-YMTNuC63eUiHtCnJFPTfGx23ru6B-52z-Ai5ZnDHoIHVHj9WSvETsmCi5lRxLU9LBiFp3TB2Ti5y3gOsGRN8QV53KU69wVD5EGOqpoBjrnC0lRvnwSU89HGsoq9MHKbgPn9fyRV-mMOhp2O0Jec5eTQuX5IzjyG7q7-7JO-PD7vNM92-Pb1s7rcUmVxzKkG42pqOa7AcoNbMWaNBdLaTCq0H3jDUKLmSVmJXKhaUstDptRAN2npJbo-7JsWck_PtlPoB01fLoP2x0BYLbbFQyJsjiUP-F_oGnlxbFA</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Markwig, Hannah</creator><creator>Markwig, Thomas</creator><creator>Shaw, Kris</creator><creator>Shustin, Eugenii</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202204</creationdate><title>Tropical floor plans and enumeration of complex and real multi-nodal surfaces</title><author>Markwig, Hannah ; Markwig, Thomas ; Shaw, Kris ; Shustin, Eugenii</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1624-605e3dcb480d400381edc805bdb67adf0491a8a6476d6ab624d077d0b82559ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Research article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Markwig, Hannah</creatorcontrib><creatorcontrib>Markwig, Thomas</creatorcontrib><creatorcontrib>Shaw, Kris</creatorcontrib><creatorcontrib>Shustin, Eugenii</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of algebraic geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Markwig, Hannah</au><au>Markwig, Thomas</au><au>Shaw, Kris</au><au>Shustin, Eugenii</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tropical floor plans and enumeration of complex and real multi-nodal surfaces</atitle><jtitle>Journal of algebraic geometry</jtitle><stitle>J. Algebraic Geom</stitle><date>2022-04</date><risdate>2022</risdate><volume>31</volume><issue>2</issue><spage>261</spage><epage>301</epage><pages>261-301</pages><issn>1056-3911</issn><eissn>1534-7486</eissn><abstract>The family of complex projective surfaces in P3\mathbb {P}^3 of degree dd having precisely δ\delta nodes as their only singularities has codimension δ\delta in the linear system |OP3(d)||{\mathcal O}_{\mathbb {P}^3}(d)| for sufficiently large dd and is of degree Nδ,CP3(d)=(4(d−1)3)δ/δ!+O(d3δ−3)N_{\delta ,\mathbb {C}}^{\mathbb {P}^3}(d)=(4(d-1)^3)^\delta /\delta !+O(d^{3\delta -3}). In particular, Nδ,CP3(d)N_{\delta ,\mathbb {C}}^{\mathbb {P}^3}(d) is polynomial in dd. By means of tropical geometry, we explicitly describe (4d3)δ/δ!+O(d3δ−1)(4d^3)^\delta /\delta !+O(d^{3\delta -1}) surfaces passing through a suitable generic configuration of n=(d+33)−δ−1n=\binom {d+3}{3}-\delta -1 points in P3\mathbb {P}^3. These surfaces are close to tropical limits which we characterize combinatorially, introducing the concept of floor plans for multinodal tropical surfaces. The concept of floor plans is similar to the well-known floor diagrams (a combinatorial tool for tropical curve counts): with it, we keep the combinatorial essentials of a multinodal tropical surface SS which are sufficient to reconstruct SS. In the real case, we estimate the range for possible numbers of real multi-nodal surfaces satisfying point conditions. We show that, for a special configuration w\boldsymbol {w} of real points, the number Nδ,RP3(d,w)N_{\delta ,\mathbb {R}}^{\mathbb {P}^3}(d,\boldsymbol {w}) of real surfaces of degree dd having δ\delta real nodes and passing through w\boldsymbol {w} is bounded from below by (32d3)δ/δ!+O(d3δ−1)\left (\frac {3}{2}d^3\right )^\delta /\delta ! +O(d^{3\delta -1}). We prove analogous statements for counts of multinodal surfaces in P1×P2\mathbb {P}^1\times \mathbb {P}^2 and P1×P1×P1\mathbb {P}^1\times \mathbb {P}^1\times \mathbb {P}^1.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/jag/774</doi><tpages>41</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1056-3911
ispartof Journal of algebraic geometry, 2022-04, Vol.31 (2), p.261-301
issn 1056-3911
1534-7486
language eng
recordid cdi_crossref_primary_10_1090_jag_774
source American Mathematical Society Publications
subjects Research article
title Tropical floor plans and enumeration of complex and real multi-nodal surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A32%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tropical%20floor%20plans%20and%20enumeration%20of%20complex%20and%20real%20multi-nodal%20surfaces&rft.jtitle=Journal%20of%20algebraic%20geometry&rft.au=Markwig,%20Hannah&rft.date=2022-04&rft.volume=31&rft.issue=2&rft.spage=261&rft.epage=301&rft.pages=261-301&rft.issn=1056-3911&rft.eissn=1534-7486&rft_id=info:doi/10.1090/jag/774&rft_dat=%3Cams_cross%3E10_1090_jag_774%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true