Arakelov motivic cohomology II
We show that the constructions done in part I generalize their classical counterparts: firstly, the classical Beilinson regulator is induced by the abstract Chern class map from BGL \operatorname {BGL} to the Deligne cohomology spectrum. Secondly, Arakelov motivic cohomology is a generalization of a...
Gespeichert in:
Veröffentlicht in: | Journal of algebraic geometry 2015-10, Vol.24 (4), p.755-786 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 786 |
---|---|
container_issue | 4 |
container_start_page | 755 |
container_title | Journal of algebraic geometry |
container_volume | 24 |
creator | Scholbach, Jakob |
description | We show that the constructions done in part I generalize their classical counterparts: firstly, the classical Beilinson regulator is induced by the abstract Chern class map from
BGL
\operatorname {BGL}
to the Deligne cohomology spectrum. Secondly, Arakelov motivic cohomology is a generalization of arithmetic
K
K
-theory and arithmetic Chow groups. For example, this implies a decomposition of higher arithmetic
K
K
-groups in its Adams eigenspaces. Finally, we give a conceptual explanation of the height pairing: it is the natural pairing of motivic homology and Arakelov motivic cohomology. |
doi_str_mv | 10.1090/jag/647 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1090_jag_647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_jag_647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-1a723eb931baab413dd73e8a9d9e009a3d559e0f7caabfdc1ff8421969bdcd9e3</originalsourceid><addsrcrecordid>eNotj01LAzEURYMoWKv4D2R2rmLz8pLJZFmK1oGCG12HTD7q1BkiSSn03xvR1T1wLxcOIffAnoBptjrY_aoV6oIsQKKgSnTtZWUmW4oa4JrclHJgjANIsSAP62y_wpROzZyO42l0jUufaU5T2p-bvr8lV9FOJdz955J8vDy_b17p7m3bb9Y76jiXRwpWcQyDRhisHQSg9wpDZ7XXgTFt0UtZKSpX6-gdxNgJDrrVg3d1g0vy-Pfrciolh2i-8zjbfDbAzK-WqVqmauEP6uI_0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Arakelov motivic cohomology II</title><source>American Mathematical Society Journals</source><source>Alma/SFX Local Collection</source><creator>Scholbach, Jakob</creator><creatorcontrib>Scholbach, Jakob</creatorcontrib><description>We show that the constructions done in part I generalize their classical counterparts: firstly, the classical Beilinson regulator is induced by the abstract Chern class map from
BGL
\operatorname {BGL}
to the Deligne cohomology spectrum. Secondly, Arakelov motivic cohomology is a generalization of arithmetic
K
K
-theory and arithmetic Chow groups. For example, this implies a decomposition of higher arithmetic
K
K
-groups in its Adams eigenspaces. Finally, we give a conceptual explanation of the height pairing: it is the natural pairing of motivic homology and Arakelov motivic cohomology.</description><identifier>ISSN: 1056-3911</identifier><identifier>EISSN: 1534-7486</identifier><identifier>DOI: 10.1090/jag/647</identifier><language>eng</language><ispartof>Journal of algebraic geometry, 2015-10, Vol.24 (4), p.755-786</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-1a723eb931baab413dd73e8a9d9e009a3d559e0f7caabfdc1ff8421969bdcd9e3</citedby><cites>FETCH-LOGICAL-c225t-1a723eb931baab413dd73e8a9d9e009a3d559e0f7caabfdc1ff8421969bdcd9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Scholbach, Jakob</creatorcontrib><title>Arakelov motivic cohomology II</title><title>Journal of algebraic geometry</title><description>We show that the constructions done in part I generalize their classical counterparts: firstly, the classical Beilinson regulator is induced by the abstract Chern class map from
BGL
\operatorname {BGL}
to the Deligne cohomology spectrum. Secondly, Arakelov motivic cohomology is a generalization of arithmetic
K
K
-theory and arithmetic Chow groups. For example, this implies a decomposition of higher arithmetic
K
K
-groups in its Adams eigenspaces. Finally, we give a conceptual explanation of the height pairing: it is the natural pairing of motivic homology and Arakelov motivic cohomology.</description><issn>1056-3911</issn><issn>1534-7486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotj01LAzEURYMoWKv4D2R2rmLz8pLJZFmK1oGCG12HTD7q1BkiSSn03xvR1T1wLxcOIffAnoBptjrY_aoV6oIsQKKgSnTtZWUmW4oa4JrclHJgjANIsSAP62y_wpROzZyO42l0jUufaU5T2p-bvr8lV9FOJdz955J8vDy_b17p7m3bb9Y76jiXRwpWcQyDRhisHQSg9wpDZ7XXgTFt0UtZKSpX6-gdxNgJDrrVg3d1g0vy-Pfrciolh2i-8zjbfDbAzK-WqVqmauEP6uI_0A</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Scholbach, Jakob</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151001</creationdate><title>Arakelov motivic cohomology II</title><author>Scholbach, Jakob</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-1a723eb931baab413dd73e8a9d9e009a3d559e0f7caabfdc1ff8421969bdcd9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scholbach, Jakob</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of algebraic geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scholbach, Jakob</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arakelov motivic cohomology II</atitle><jtitle>Journal of algebraic geometry</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>24</volume><issue>4</issue><spage>755</spage><epage>786</epage><pages>755-786</pages><issn>1056-3911</issn><eissn>1534-7486</eissn><abstract>We show that the constructions done in part I generalize their classical counterparts: firstly, the classical Beilinson regulator is induced by the abstract Chern class map from
BGL
\operatorname {BGL}
to the Deligne cohomology spectrum. Secondly, Arakelov motivic cohomology is a generalization of arithmetic
K
K
-theory and arithmetic Chow groups. For example, this implies a decomposition of higher arithmetic
K
K
-groups in its Adams eigenspaces. Finally, we give a conceptual explanation of the height pairing: it is the natural pairing of motivic homology and Arakelov motivic cohomology.</abstract><doi>10.1090/jag/647</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1056-3911 |
ispartof | Journal of algebraic geometry, 2015-10, Vol.24 (4), p.755-786 |
issn | 1056-3911 1534-7486 |
language | eng |
recordid | cdi_crossref_primary_10_1090_jag_647 |
source | American Mathematical Society Journals; Alma/SFX Local Collection |
title | Arakelov motivic cohomology II |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T18%3A30%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arakelov%20motivic%20cohomology%20II&rft.jtitle=Journal%20of%20algebraic%20geometry&rft.au=Scholbach,%20Jakob&rft.date=2015-10-01&rft.volume=24&rft.issue=4&rft.spage=755&rft.epage=786&rft.pages=755-786&rft.issn=1056-3911&rft.eissn=1534-7486&rft_id=info:doi/10.1090/jag/647&rft_dat=%3Ccrossref%3E10_1090_jag_647%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |