Arakelov motivic cohomology II

We show that the constructions done in part I generalize their classical counterparts: firstly, the classical Beilinson regulator is induced by the abstract Chern class map from BGL \operatorname {BGL} to the Deligne cohomology spectrum. Secondly, Arakelov motivic cohomology is a generalization of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebraic geometry 2015-10, Vol.24 (4), p.755-786
1. Verfasser: Scholbach, Jakob
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the constructions done in part I generalize their classical counterparts: firstly, the classical Beilinson regulator is induced by the abstract Chern class map from BGL \operatorname {BGL} to the Deligne cohomology spectrum. Secondly, Arakelov motivic cohomology is a generalization of arithmetic K K -theory and arithmetic Chow groups. For example, this implies a decomposition of higher arithmetic K K -groups in its Adams eigenspaces. Finally, we give a conceptual explanation of the height pairing: it is the natural pairing of motivic homology and Arakelov motivic cohomology.
ISSN:1056-3911
1534-7486
DOI:10.1090/jag/647