Arakelov motivic cohomology II
We show that the constructions done in part I generalize their classical counterparts: firstly, the classical Beilinson regulator is induced by the abstract Chern class map from BGL \operatorname {BGL} to the Deligne cohomology spectrum. Secondly, Arakelov motivic cohomology is a generalization of a...
Gespeichert in:
Veröffentlicht in: | Journal of algebraic geometry 2015-10, Vol.24 (4), p.755-786 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that the constructions done in part I generalize their classical counterparts: firstly, the classical Beilinson regulator is induced by the abstract Chern class map from
BGL
\operatorname {BGL}
to the Deligne cohomology spectrum. Secondly, Arakelov motivic cohomology is a generalization of arithmetic
K
K
-theory and arithmetic Chow groups. For example, this implies a decomposition of higher arithmetic
K
K
-groups in its Adams eigenspaces. Finally, we give a conceptual explanation of the height pairing: it is the natural pairing of motivic homology and Arakelov motivic cohomology. |
---|---|
ISSN: | 1056-3911 1534-7486 |
DOI: | 10.1090/jag/647 |