Stability of canonical bases of irreducible finite type of real rank one

It has been known since their birth in Bao and Wang’s work that the ı \imath canonical bases of ı \imath quantum groups are not stable in general. In the author’s previous work, the stability of ı \imath canonical bases of certain quasi-split types turned out to be closely related to the theory of ı...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Representation theory 2023-03, Vol.27 (1), p.1-29
1. Verfasser: Watanabe, Hideya
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29
container_issue 1
container_start_page 1
container_title Representation theory
container_volume 27
creator Watanabe, Hideya
description It has been known since their birth in Bao and Wang’s work that the ı \imath canonical bases of ı \imath quantum groups are not stable in general. In the author’s previous work, the stability of ı \imath canonical bases of certain quasi-split types turned out to be closely related to the theory of ı \imath crystals. In this paper, we prove the stability of ı \imath canonical bases of irreducible finite type of real rank 1 1 , for which the theory of ı \imath crystals has not been developed, by means of global and local crystal bases.
doi_str_mv 10.1090/ert/639
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1090_ert_639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_ert_639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c216t-ff6ea70c22c62c60170ea58babd18ac331fb0d1919fe6b4732906eea0fa74a323</originalsourceid><addsrcrecordid>eNpNkEFLxDAQhYMouK7iX8jNU92Zpk3aoyzqCgse1HOZpBOI1nZJ4qH_3i56WHjwHu8Nc_iEuEW4R2hhwzFvtGrPxAqhaYoKdX1-ki_FVUqfAIimNiuxe8tkwxDyLCcvHY3TGBwN0lLidKxCjNz_uGAHlj6MIbPM84GPU-TlMNL4JaeRr8WFpyHxzb-vxcfT4_t2V-xfn1-2D_vClahz4b1mMuDK0ulFgAaY6saS7bEhpxR6Cz222HrWtjKqbEEzE3gyFalSrcXd318Xp5Qi--4QwzfFuUPojgC6BUC3AFC_jFtOoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stability of canonical bases of irreducible finite type of real rank one</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>American Mathematical Society Publications</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Watanabe, Hideya</creator><creatorcontrib>Watanabe, Hideya</creatorcontrib><description>It has been known since their birth in Bao and Wang’s work that the ı \imath canonical bases of ı \imath quantum groups are not stable in general. In the author’s previous work, the stability of ı \imath canonical bases of certain quasi-split types turned out to be closely related to the theory of ı \imath crystals. In this paper, we prove the stability of ı \imath canonical bases of irreducible finite type of real rank 1 1 , for which the theory of ı \imath crystals has not been developed, by means of global and local crystal bases.</description><identifier>ISSN: 1088-4165</identifier><identifier>EISSN: 1088-4165</identifier><identifier>DOI: 10.1090/ert/639</identifier><language>eng</language><ispartof>Representation theory, 2023-03, Vol.27 (1), p.1-29</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c216t-ff6ea70c22c62c60170ea58babd18ac331fb0d1919fe6b4732906eea0fa74a323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Watanabe, Hideya</creatorcontrib><title>Stability of canonical bases of irreducible finite type of real rank one</title><title>Representation theory</title><description>It has been known since their birth in Bao and Wang’s work that the ı \imath canonical bases of ı \imath quantum groups are not stable in general. In the author’s previous work, the stability of ı \imath canonical bases of certain quasi-split types turned out to be closely related to the theory of ı \imath crystals. In this paper, we prove the stability of ı \imath canonical bases of irreducible finite type of real rank 1 1 , for which the theory of ı \imath crystals has not been developed, by means of global and local crystal bases.</description><issn>1088-4165</issn><issn>1088-4165</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkEFLxDAQhYMouK7iX8jNU92Zpk3aoyzqCgse1HOZpBOI1nZJ4qH_3i56WHjwHu8Nc_iEuEW4R2hhwzFvtGrPxAqhaYoKdX1-ki_FVUqfAIimNiuxe8tkwxDyLCcvHY3TGBwN0lLidKxCjNz_uGAHlj6MIbPM84GPU-TlMNL4JaeRr8WFpyHxzb-vxcfT4_t2V-xfn1-2D_vClahz4b1mMuDK0ulFgAaY6saS7bEhpxR6Cz222HrWtjKqbEEzE3gyFalSrcXd318Xp5Qi--4QwzfFuUPojgC6BUC3AFC_jFtOoA</recordid><startdate>20230306</startdate><enddate>20230306</enddate><creator>Watanabe, Hideya</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230306</creationdate><title>Stability of canonical bases of irreducible finite type of real rank one</title><author>Watanabe, Hideya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c216t-ff6ea70c22c62c60170ea58babd18ac331fb0d1919fe6b4732906eea0fa74a323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watanabe, Hideya</creatorcontrib><collection>CrossRef</collection><jtitle>Representation theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watanabe, Hideya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of canonical bases of irreducible finite type of real rank one</atitle><jtitle>Representation theory</jtitle><date>2023-03-06</date><risdate>2023</risdate><volume>27</volume><issue>1</issue><spage>1</spage><epage>29</epage><pages>1-29</pages><issn>1088-4165</issn><eissn>1088-4165</eissn><abstract>It has been known since their birth in Bao and Wang’s work that the ı \imath canonical bases of ı \imath quantum groups are not stable in general. In the author’s previous work, the stability of ı \imath canonical bases of certain quasi-split types turned out to be closely related to the theory of ı \imath crystals. In this paper, we prove the stability of ı \imath canonical bases of irreducible finite type of real rank 1 1 , for which the theory of ı \imath crystals has not been developed, by means of global and local crystal bases.</abstract><doi>10.1090/ert/639</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1088-4165
ispartof Representation theory, 2023-03, Vol.27 (1), p.1-29
issn 1088-4165
1088-4165
language eng
recordid cdi_crossref_primary_10_1090_ert_639
source American Mathematical Society Publications (Freely Accessible); American Mathematical Society Publications; EZB-FREE-00999 freely available EZB journals
title Stability of canonical bases of irreducible finite type of real rank one
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A45%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20canonical%20bases%20of%20irreducible%20finite%20type%20of%20real%20rank%20one&rft.jtitle=Representation%20theory&rft.au=Watanabe,%20Hideya&rft.date=2023-03-06&rft.volume=27&rft.issue=1&rft.spage=1&rft.epage=29&rft.pages=1-29&rft.issn=1088-4165&rft.eissn=1088-4165&rft_id=info:doi/10.1090/ert/639&rft_dat=%3Ccrossref%3E10_1090_ert_639%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true