Translation covers of some triply periodic Platonic surfaces

We study translation covers of several triply periodic polyhedral surfaces that are intrinsically Platonic. We describe their affine symmetry groups and compute the quadratic asymptotics for counting saddle connections and cylinders, including the count of cylinders weighted by area. The mathematica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Conformal geometry and dynamics 2021-04, Vol.25 (2), p.34-50
Hauptverfasser: Athreya, Jayadev, Lee, Dami
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 50
container_issue 2
container_start_page 34
container_title Conformal geometry and dynamics
container_volume 25
creator Athreya, Jayadev
Lee, Dami
description We study translation covers of several triply periodic polyhedral surfaces that are intrinsically Platonic. We describe their affine symmetry groups and compute the quadratic asymptotics for counting saddle connections and cylinders, including the count of cylinders weighted by area. The mathematical study of triply periodic surfaces was initiated by Novikov, motivated by the study of electron transport. The surfaces we consider are of particular interest as they admit several different explicit geometric and algebraic descriptions, as described, for example, in the second author's thesis.
doi_str_mv 10.1090/ecgd/357
format Article
fullrecord <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_ecgd_357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_ecgd_357</sourcerecordid><originalsourceid>FETCH-LOGICAL-a180t-4188a8df6cac47593a4d275d78edc208d8affdfe78c9fb532db200f81b3e9b6e3</originalsourceid><addsrcrecordid>eNp1j8FKw0AURQdRsFbBTxhw46b2TSbpTMCNFKtCQRd1HV5m3kgkyYR5Uejfm1IXblzduzjcyxHiWsGdghKW5D78UhfmRMwUWLvIldGnf_q5uGD-BFDKFPlM3O8S9tzi2MReuvhNiWUMkmNHckzN0O7lQKmJvnHybcJiPxX-SgEd8aU4C9gyXf3mXLxvHnfr58X29ell_bBdoLIwTrfWovVh5dDlpig15j4zhTeWvMvAeosh-EDGujLUhc58nQEEq2pNZb0iPRe3x12XInOiUA2p6TDtKwXVwbo6WFeT9YTeHFHs-H_qB7TOV5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Translation covers of some triply periodic Platonic surfaces</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>American Mathematical Society Publications</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Athreya, Jayadev ; Lee, Dami</creator><creatorcontrib>Athreya, Jayadev ; Lee, Dami</creatorcontrib><description>We study translation covers of several triply periodic polyhedral surfaces that are intrinsically Platonic. We describe their affine symmetry groups and compute the quadratic asymptotics for counting saddle connections and cylinders, including the count of cylinders weighted by area. The mathematical study of triply periodic surfaces was initiated by Novikov, motivated by the study of electron transport. The surfaces we consider are of particular interest as they admit several different explicit geometric and algebraic descriptions, as described, for example, in the second author's thesis.</description><identifier>ISSN: 1088-4173</identifier><identifier>EISSN: 1088-4173</identifier><identifier>DOI: 10.1090/ecgd/357</identifier><language>eng</language><ispartof>Conformal geometry and dynamics, 2021-04, Vol.25 (2), p.34-50</ispartof><rights>Copyright 2021, American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a180t-4188a8df6cac47593a4d275d78edc208d8affdfe78c9fb532db200f81b3e9b6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/ecgd/2021-25-02/S1088-4173-2021-00357-X/S1088-4173-2021-00357-X.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/ecgd/2021-25-02/S1088-4173-2021-00357-X/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,776,780,23304,23308,27903,27904,77583,77585,77593,77595</link.rule.ids></links><search><creatorcontrib>Athreya, Jayadev</creatorcontrib><creatorcontrib>Lee, Dami</creatorcontrib><title>Translation covers of some triply periodic Platonic surfaces</title><title>Conformal geometry and dynamics</title><description>We study translation covers of several triply periodic polyhedral surfaces that are intrinsically Platonic. We describe their affine symmetry groups and compute the quadratic asymptotics for counting saddle connections and cylinders, including the count of cylinders weighted by area. The mathematical study of triply periodic surfaces was initiated by Novikov, motivated by the study of electron transport. The surfaces we consider are of particular interest as they admit several different explicit geometric and algebraic descriptions, as described, for example, in the second author's thesis.</description><issn>1088-4173</issn><issn>1088-4173</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1j8FKw0AURQdRsFbBTxhw46b2TSbpTMCNFKtCQRd1HV5m3kgkyYR5Uejfm1IXblzduzjcyxHiWsGdghKW5D78UhfmRMwUWLvIldGnf_q5uGD-BFDKFPlM3O8S9tzi2MReuvhNiWUMkmNHckzN0O7lQKmJvnHybcJiPxX-SgEd8aU4C9gyXf3mXLxvHnfr58X29ell_bBdoLIwTrfWovVh5dDlpig15j4zhTeWvMvAeosh-EDGujLUhc58nQEEq2pNZb0iPRe3x12XInOiUA2p6TDtKwXVwbo6WFeT9YTeHFHs-H_qB7TOV5A</recordid><startdate>20210402</startdate><enddate>20210402</enddate><creator>Athreya, Jayadev</creator><creator>Lee, Dami</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210402</creationdate><title>Translation covers of some triply periodic Platonic surfaces</title><author>Athreya, Jayadev ; Lee, Dami</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a180t-4188a8df6cac47593a4d275d78edc208d8affdfe78c9fb532db200f81b3e9b6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Athreya, Jayadev</creatorcontrib><creatorcontrib>Lee, Dami</creatorcontrib><collection>CrossRef</collection><jtitle>Conformal geometry and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Athreya, Jayadev</au><au>Lee, Dami</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Translation covers of some triply periodic Platonic surfaces</atitle><jtitle>Conformal geometry and dynamics</jtitle><date>2021-04-02</date><risdate>2021</risdate><volume>25</volume><issue>2</issue><spage>34</spage><epage>50</epage><pages>34-50</pages><issn>1088-4173</issn><eissn>1088-4173</eissn><abstract>We study translation covers of several triply periodic polyhedral surfaces that are intrinsically Platonic. We describe their affine symmetry groups and compute the quadratic asymptotics for counting saddle connections and cylinders, including the count of cylinders weighted by area. The mathematical study of triply periodic surfaces was initiated by Novikov, motivated by the study of electron transport. The surfaces we consider are of particular interest as they admit several different explicit geometric and algebraic descriptions, as described, for example, in the second author's thesis.</abstract><doi>10.1090/ecgd/357</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1088-4173
ispartof Conformal geometry and dynamics, 2021-04, Vol.25 (2), p.34-50
issn 1088-4173
1088-4173
language eng
recordid cdi_crossref_primary_10_1090_ecgd_357
source American Mathematical Society Publications (Freely Accessible); American Mathematical Society Publications; EZB-FREE-00999 freely available EZB journals
title Translation covers of some triply periodic Platonic surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A14%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Translation%20covers%20of%20some%20triply%20periodic%20Platonic%20surfaces&rft.jtitle=Conformal%20geometry%20and%20dynamics&rft.au=Athreya,%20Jayadev&rft.date=2021-04-02&rft.volume=25&rft.issue=2&rft.spage=34&rft.epage=50&rft.pages=34-50&rft.issn=1088-4173&rft.eissn=1088-4173&rft_id=info:doi/10.1090/ecgd/357&rft_dat=%3Cams_cross%3E10_1090_ecgd_357%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true