Translation covers of some triply periodic Platonic surfaces
We study translation covers of several triply periodic polyhedral surfaces that are intrinsically Platonic. We describe their affine symmetry groups and compute the quadratic asymptotics for counting saddle connections and cylinders, including the count of cylinders weighted by area. The mathematica...
Gespeichert in:
Veröffentlicht in: | Conformal geometry and dynamics 2021-04, Vol.25 (2), p.34-50 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 50 |
---|---|
container_issue | 2 |
container_start_page | 34 |
container_title | Conformal geometry and dynamics |
container_volume | 25 |
creator | Athreya, Jayadev Lee, Dami |
description | We study translation covers of several triply periodic polyhedral surfaces that are intrinsically Platonic. We describe their affine symmetry groups and compute the quadratic asymptotics for counting saddle connections and cylinders, including the count of cylinders weighted by area. The mathematical study of triply periodic surfaces was initiated by Novikov, motivated by the study of electron transport. The surfaces we consider are of particular interest as they admit several different explicit geometric and algebraic descriptions, as described, for example, in the second author's thesis. |
doi_str_mv | 10.1090/ecgd/357 |
format | Article |
fullrecord | <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_ecgd_357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_ecgd_357</sourcerecordid><originalsourceid>FETCH-LOGICAL-a180t-4188a8df6cac47593a4d275d78edc208d8affdfe78c9fb532db200f81b3e9b6e3</originalsourceid><addsrcrecordid>eNp1j8FKw0AURQdRsFbBTxhw46b2TSbpTMCNFKtCQRd1HV5m3kgkyYR5Uejfm1IXblzduzjcyxHiWsGdghKW5D78UhfmRMwUWLvIldGnf_q5uGD-BFDKFPlM3O8S9tzi2MReuvhNiWUMkmNHckzN0O7lQKmJvnHybcJiPxX-SgEd8aU4C9gyXf3mXLxvHnfr58X29ell_bBdoLIwTrfWovVh5dDlpig15j4zhTeWvMvAeosh-EDGujLUhc58nQEEq2pNZb0iPRe3x12XInOiUA2p6TDtKwXVwbo6WFeT9YTeHFHs-H_qB7TOV5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Translation covers of some triply periodic Platonic surfaces</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>American Mathematical Society Publications</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Athreya, Jayadev ; Lee, Dami</creator><creatorcontrib>Athreya, Jayadev ; Lee, Dami</creatorcontrib><description>We study translation covers of several triply periodic polyhedral surfaces that are intrinsically Platonic. We describe their affine symmetry groups and compute the quadratic asymptotics for counting saddle connections and cylinders, including the count of cylinders weighted by area. The mathematical study of triply periodic surfaces was initiated by Novikov, motivated by the study of electron transport. The surfaces we consider are of particular interest as they admit several different explicit geometric and algebraic descriptions, as described, for example, in the second author's thesis.</description><identifier>ISSN: 1088-4173</identifier><identifier>EISSN: 1088-4173</identifier><identifier>DOI: 10.1090/ecgd/357</identifier><language>eng</language><ispartof>Conformal geometry and dynamics, 2021-04, Vol.25 (2), p.34-50</ispartof><rights>Copyright 2021, American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a180t-4188a8df6cac47593a4d275d78edc208d8affdfe78c9fb532db200f81b3e9b6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/ecgd/2021-25-02/S1088-4173-2021-00357-X/S1088-4173-2021-00357-X.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/ecgd/2021-25-02/S1088-4173-2021-00357-X/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,776,780,23304,23308,27903,27904,77583,77585,77593,77595</link.rule.ids></links><search><creatorcontrib>Athreya, Jayadev</creatorcontrib><creatorcontrib>Lee, Dami</creatorcontrib><title>Translation covers of some triply periodic Platonic surfaces</title><title>Conformal geometry and dynamics</title><description>We study translation covers of several triply periodic polyhedral surfaces that are intrinsically Platonic. We describe their affine symmetry groups and compute the quadratic asymptotics for counting saddle connections and cylinders, including the count of cylinders weighted by area. The mathematical study of triply periodic surfaces was initiated by Novikov, motivated by the study of electron transport. The surfaces we consider are of particular interest as they admit several different explicit geometric and algebraic descriptions, as described, for example, in the second author's thesis.</description><issn>1088-4173</issn><issn>1088-4173</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1j8FKw0AURQdRsFbBTxhw46b2TSbpTMCNFKtCQRd1HV5m3kgkyYR5Uejfm1IXblzduzjcyxHiWsGdghKW5D78UhfmRMwUWLvIldGnf_q5uGD-BFDKFPlM3O8S9tzi2MReuvhNiWUMkmNHckzN0O7lQKmJvnHybcJiPxX-SgEd8aU4C9gyXf3mXLxvHnfr58X29ell_bBdoLIwTrfWovVh5dDlpig15j4zhTeWvMvAeosh-EDGujLUhc58nQEEq2pNZb0iPRe3x12XInOiUA2p6TDtKwXVwbo6WFeT9YTeHFHs-H_qB7TOV5A</recordid><startdate>20210402</startdate><enddate>20210402</enddate><creator>Athreya, Jayadev</creator><creator>Lee, Dami</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210402</creationdate><title>Translation covers of some triply periodic Platonic surfaces</title><author>Athreya, Jayadev ; Lee, Dami</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a180t-4188a8df6cac47593a4d275d78edc208d8affdfe78c9fb532db200f81b3e9b6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Athreya, Jayadev</creatorcontrib><creatorcontrib>Lee, Dami</creatorcontrib><collection>CrossRef</collection><jtitle>Conformal geometry and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Athreya, Jayadev</au><au>Lee, Dami</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Translation covers of some triply periodic Platonic surfaces</atitle><jtitle>Conformal geometry and dynamics</jtitle><date>2021-04-02</date><risdate>2021</risdate><volume>25</volume><issue>2</issue><spage>34</spage><epage>50</epage><pages>34-50</pages><issn>1088-4173</issn><eissn>1088-4173</eissn><abstract>We study translation covers of several triply periodic polyhedral surfaces that are intrinsically Platonic. We describe their affine symmetry groups and compute the quadratic asymptotics for counting saddle connections and cylinders, including the count of cylinders weighted by area. The mathematical study of triply periodic surfaces was initiated by Novikov, motivated by the study of electron transport. The surfaces we consider are of particular interest as they admit several different explicit geometric and algebraic descriptions, as described, for example, in the second author's thesis.</abstract><doi>10.1090/ecgd/357</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1088-4173 |
ispartof | Conformal geometry and dynamics, 2021-04, Vol.25 (2), p.34-50 |
issn | 1088-4173 1088-4173 |
language | eng |
recordid | cdi_crossref_primary_10_1090_ecgd_357 |
source | American Mathematical Society Publications (Freely Accessible); American Mathematical Society Publications; EZB-FREE-00999 freely available EZB journals |
title | Translation covers of some triply periodic Platonic surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A14%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Translation%20covers%20of%20some%20triply%20periodic%20Platonic%20surfaces&rft.jtitle=Conformal%20geometry%20and%20dynamics&rft.au=Athreya,%20Jayadev&rft.date=2021-04-02&rft.volume=25&rft.issue=2&rft.spage=34&rft.epage=50&rft.pages=34-50&rft.issn=1088-4173&rft.eissn=1088-4173&rft_id=info:doi/10.1090/ecgd/357&rft_dat=%3Cams_cross%3E10_1090_ecgd_357%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |