algebras, groupoids and covers of shift spaces

To every one-sided shift space X \mathsf {X} we associate a cover X ~ \widetilde {\mathsf {X}} , a groupoid G X \mathcal {G}_\mathsf {X} and a C ∗ \mathrm {C^*} -algebra O X \mathcal {O}_\mathsf {X} . We characterize one-sided conjugacy, eventual conjugacy and (stabilizer-preserving) continuous orbi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society. Series B 2020-10, Vol.7 (5), p.134-185
Hauptverfasser: Brix, Kevin, Carlsen, Toke
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To every one-sided shift space X \mathsf {X} we associate a cover X ~ \widetilde {\mathsf {X}} , a groupoid G X \mathcal {G}_\mathsf {X} and a C ∗ \mathrm {C^*} -algebra O X \mathcal {O}_\mathsf {X} . We characterize one-sided conjugacy, eventual conjugacy and (stabilizer-preserving) continuous orbit equivalence between X \mathsf {X} and Y \mathsf {Y} in terms of isomorphism of G X \mathcal {G}_\mathsf {X} and G Y \mathcal {G}_\mathsf {Y} , and diagonal-preserving ∗ ^* -isomorphism of O X \mathcal {O}_\mathsf {X} and O Y \mathcal {O}_\mathsf {Y} . We also characterize two-sided conjugacy and flow equivalence of the associated two-sided shift spaces Λ X \Lambda _\mathsf {X} and Λ Y \Lambda _\mathsf {Y} in terms of isomorphism of the stabilized groupoids G X × R \mathcal {G}_\mathsf {X}\times \mathcal {R} and G Y × R \mathcal {G}_\mathsf {Y}\times \mathcal {R} , and diagonal-preserving ∗ ^* -isomorphism of the stabilized C ∗ \mathrm {C^*} -algebras O X ⊗ K \mathcal {O}_\mathsf {X}\otimes \mathbb {K} and O Y ⊗ K \mathcal {O}_\mathsf {Y}\otimes \mathbb {K} . Our strategy is to lift relations on the shift spaces to similar relations on the covers. Restricting to the class of sofic shifts whose groupoids are effective, we show that it is possible to recover the continuous orbit equivalence class of X \mathsf {X} from the pair ( O X , C ( X ) ) (\mathcal {O}_\mathsf {X}, C(\mathsf {X})) , and the flow equivalence class of Λ X \Lambda _\mathsf {X} from the pair ( O X ⊗ K , C ( X ) ⊗ c 0 ) (\mathcal {O}_\mathsf {X}\otimes \mathbb {K}, C(\mathsf {X})\otimes c_0) . In particular, continuous orbit equivalence implies flow equivalence for this class of shift spaces.
ISSN:2330-0000
2330-0000
DOI:10.1090/btran/53