Maximal connected -subgroups of maximal rank in connected reductive algebraic -groups

Let k k be any field and let G G be a connected reductive algebraic k k -group. Associated to G G is an invariant first studied in the 1960s by Satake [Ann. of Math. (2) 71 (1960), 77–110] and Tits [Théorie des Groupes Algébriques (Bruxelles, 1962), Librairie Universitaire, Louvain; Gauthier- Villar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society. Series B 2022-10, Vol.9 (29), p.896-956
1. Verfasser: Sercombe, Damian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 956
container_issue 29
container_start_page 896
container_title Transactions of the American Mathematical Society. Series B
container_volume 9
creator Sercombe, Damian
description Let k k be any field and let G G be a connected reductive algebraic k k -group. Associated to G G is an invariant first studied in the 1960s by Satake [Ann. of Math. (2) 71 (1960), 77–110] and Tits [Théorie des Groupes Algébriques (Bruxelles, 1962), Librairie Universitaire, Louvain; Gauthier- Villars, Paris, 1962], [Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., Providence, R.I., 1966, pp. 33–62] that is called the index of G G (a Dynkin diagram along with some additional combinatorial information). Tits [Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., Providence, R.I., 1966, pp. 33–62] showed that the k k -isogeny class of G G is uniquely determined by its index and the k k -isogeny class of its anisotropic kernel G a G_a . For the cases where G G is absolutely simple, all possibilities for the index of G G have been classified in by Tits [Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., Providence, R.I., 1966, pp. 33–62]. Let H H be a connected reductive k k -subgroup of maximal rank in G G . We introduce an invariant of the G ( k ) G(k) -conjugacy class of H H in G G called the embedding of indices of H ⊂ G H \subset G . This consists of the index of H H and the index of G G along with an embedding map that satisfies certain compatibility conditions. We introduce an equivalence relation called index-conjugacy on the set of k k -subgroups of G G , and observe that the G ( k ) G(k) -conjugacy class of H H in G G is determined by its index-conjugacy class and the G ( k ) G(k) -conjugacy class of H a H_a in G G . We show that the index-conjugacy class of H H in G G is uniquely determined by its embedding of indices. For the cases where G G is absolutely simple of exceptional type and H H is maximal connected in G G , we classify all possibilities for the embedding of indices of H ⊂ G H \subset G . Finally, we establish some existence results. In particular, we consider which embeddings of indices exist when k k has cohomological dimension 1 (resp. k = R k=\mathbb {R} , k k is p \mathfrak {p} -adic).
doi_str_mv 10.1090/btran/112
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1090_btran_112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_btran_112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692-c6c08130858f8216f539493aff17527e5a4cd0ed4cee99faa4f439e69531f0c43</originalsourceid><addsrcrecordid>eNpNUMtOwzAQtBBIVKUH_sBXDqbrVxIfUcVLKuJSzpbjrKtAmlR2guDvMW0P3cPuSDs7mh1CbjncczCwrMfo-iXn4oLMhJTAINflGb4mi5Q-M8gcXepqRj7e3E-7cx31Q9-jH7GhLE31Ng7TPtEh0N1pn5W_aNuf8SI2kx_bb6Su22IdXespOx7ekKvguoSL05yTzdPjZvXC1u_Pr6uHNfOFEbl5qLiESlehErwIWhplpAuBl1qUqJ3yDWCjPKIxwTkVlDRYGC15AK_knNwdZX0cUooY7D5ms_HXcrD_idhDIjZ_K_8ACQpU8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Maximal connected -subgroups of maximal rank in connected reductive algebraic -groups</title><source>DOAJ Directory of Open Access Journals</source><source>American Mathematical Society Publications (Freely Accessible)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sercombe, Damian</creator><creatorcontrib>Sercombe, Damian</creatorcontrib><description>Let k k be any field and let G G be a connected reductive algebraic k k -group. Associated to G G is an invariant first studied in the 1960s by Satake [Ann. of Math. (2) 71 (1960), 77–110] and Tits [Théorie des Groupes Algébriques (Bruxelles, 1962), Librairie Universitaire, Louvain; Gauthier- Villars, Paris, 1962], [Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., Providence, R.I., 1966, pp. 33–62] that is called the index of G G (a Dynkin diagram along with some additional combinatorial information). Tits [Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., Providence, R.I., 1966, pp. 33–62] showed that the k k -isogeny class of G G is uniquely determined by its index and the k k -isogeny class of its anisotropic kernel G a G_a . For the cases where G G is absolutely simple, all possibilities for the index of G G have been classified in by Tits [Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., Providence, R.I., 1966, pp. 33–62]. Let H H be a connected reductive k k -subgroup of maximal rank in G G . We introduce an invariant of the G ( k ) G(k) -conjugacy class of H H in G G called the embedding of indices of H ⊂ G H \subset G . This consists of the index of H H and the index of G G along with an embedding map that satisfies certain compatibility conditions. We introduce an equivalence relation called index-conjugacy on the set of k k -subgroups of G G , and observe that the G ( k ) G(k) -conjugacy class of H H in G G is determined by its index-conjugacy class and the G ( k ) G(k) -conjugacy class of H a H_a in G G . We show that the index-conjugacy class of H H in G G is uniquely determined by its embedding of indices. For the cases where G G is absolutely simple of exceptional type and H H is maximal connected in G G , we classify all possibilities for the embedding of indices of H ⊂ G H \subset G . Finally, we establish some existence results. In particular, we consider which embeddings of indices exist when k k has cohomological dimension 1 (resp. k = R k=\mathbb {R} , k k is p \mathfrak {p} -adic).</description><identifier>ISSN: 2330-0000</identifier><identifier>EISSN: 2330-0000</identifier><identifier>DOI: 10.1090/btran/112</identifier><language>eng</language><ispartof>Transactions of the American Mathematical Society. Series B, 2022-10, Vol.9 (29), p.896-956</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c692-c6c08130858f8216f539493aff17527e5a4cd0ed4cee99faa4f439e69531f0c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,27905,27906</link.rule.ids></links><search><creatorcontrib>Sercombe, Damian</creatorcontrib><title>Maximal connected -subgroups of maximal rank in connected reductive algebraic -groups</title><title>Transactions of the American Mathematical Society. Series B</title><description>Let k k be any field and let G G be a connected reductive algebraic k k -group. Associated to G G is an invariant first studied in the 1960s by Satake [Ann. of Math. (2) 71 (1960), 77–110] and Tits [Théorie des Groupes Algébriques (Bruxelles, 1962), Librairie Universitaire, Louvain; Gauthier- Villars, Paris, 1962], [Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., Providence, R.I., 1966, pp. 33–62] that is called the index of G G (a Dynkin diagram along with some additional combinatorial information). Tits [Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., Providence, R.I., 1966, pp. 33–62] showed that the k k -isogeny class of G G is uniquely determined by its index and the k k -isogeny class of its anisotropic kernel G a G_a . For the cases where G G is absolutely simple, all possibilities for the index of G G have been classified in by Tits [Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., Providence, R.I., 1966, pp. 33–62]. Let H H be a connected reductive k k -subgroup of maximal rank in G G . We introduce an invariant of the G ( k ) G(k) -conjugacy class of H H in G G called the embedding of indices of H ⊂ G H \subset G . This consists of the index of H H and the index of G G along with an embedding map that satisfies certain compatibility conditions. We introduce an equivalence relation called index-conjugacy on the set of k k -subgroups of G G , and observe that the G ( k ) G(k) -conjugacy class of H H in G G is determined by its index-conjugacy class and the G ( k ) G(k) -conjugacy class of H a H_a in G G . We show that the index-conjugacy class of H H in G G is uniquely determined by its embedding of indices. For the cases where G G is absolutely simple of exceptional type and H H is maximal connected in G G , we classify all possibilities for the embedding of indices of H ⊂ G H \subset G . Finally, we establish some existence results. In particular, we consider which embeddings of indices exist when k k has cohomological dimension 1 (resp. k = R k=\mathbb {R} , k k is p \mathfrak {p} -adic).</description><issn>2330-0000</issn><issn>2330-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNUMtOwzAQtBBIVKUH_sBXDqbrVxIfUcVLKuJSzpbjrKtAmlR2guDvMW0P3cPuSDs7mh1CbjncczCwrMfo-iXn4oLMhJTAINflGb4mi5Q-M8gcXepqRj7e3E-7cx31Q9-jH7GhLE31Ng7TPtEh0N1pn5W_aNuf8SI2kx_bb6Su22IdXespOx7ekKvguoSL05yTzdPjZvXC1u_Pr6uHNfOFEbl5qLiESlehErwIWhplpAuBl1qUqJ3yDWCjPKIxwTkVlDRYGC15AK_knNwdZX0cUooY7D5ms_HXcrD_idhDIjZ_K_8ACQpU8A</recordid><startdate>20221019</startdate><enddate>20221019</enddate><creator>Sercombe, Damian</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221019</creationdate><title>Maximal connected -subgroups of maximal rank in connected reductive algebraic -groups</title><author>Sercombe, Damian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692-c6c08130858f8216f539493aff17527e5a4cd0ed4cee99faa4f439e69531f0c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sercombe, Damian</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society. Series B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sercombe, Damian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximal connected -subgroups of maximal rank in connected reductive algebraic -groups</atitle><jtitle>Transactions of the American Mathematical Society. Series B</jtitle><date>2022-10-19</date><risdate>2022</risdate><volume>9</volume><issue>29</issue><spage>896</spage><epage>956</epage><pages>896-956</pages><issn>2330-0000</issn><eissn>2330-0000</eissn><abstract>Let k k be any field and let G G be a connected reductive algebraic k k -group. Associated to G G is an invariant first studied in the 1960s by Satake [Ann. of Math. (2) 71 (1960), 77–110] and Tits [Théorie des Groupes Algébriques (Bruxelles, 1962), Librairie Universitaire, Louvain; Gauthier- Villars, Paris, 1962], [Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., Providence, R.I., 1966, pp. 33–62] that is called the index of G G (a Dynkin diagram along with some additional combinatorial information). Tits [Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., Providence, R.I., 1966, pp. 33–62] showed that the k k -isogeny class of G G is uniquely determined by its index and the k k -isogeny class of its anisotropic kernel G a G_a . For the cases where G G is absolutely simple, all possibilities for the index of G G have been classified in by Tits [Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., Providence, R.I., 1966, pp. 33–62]. Let H H be a connected reductive k k -subgroup of maximal rank in G G . We introduce an invariant of the G ( k ) G(k) -conjugacy class of H H in G G called the embedding of indices of H ⊂ G H \subset G . This consists of the index of H H and the index of G G along with an embedding map that satisfies certain compatibility conditions. We introduce an equivalence relation called index-conjugacy on the set of k k -subgroups of G G , and observe that the G ( k ) G(k) -conjugacy class of H H in G G is determined by its index-conjugacy class and the G ( k ) G(k) -conjugacy class of H a H_a in G G . We show that the index-conjugacy class of H H in G G is uniquely determined by its embedding of indices. For the cases where G G is absolutely simple of exceptional type and H H is maximal connected in G G , we classify all possibilities for the embedding of indices of H ⊂ G H \subset G . Finally, we establish some existence results. In particular, we consider which embeddings of indices exist when k k has cohomological dimension 1 (resp. k = R k=\mathbb {R} , k k is p \mathfrak {p} -adic).</abstract><doi>10.1090/btran/112</doi><tpages>61</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2330-0000
ispartof Transactions of the American Mathematical Society. Series B, 2022-10, Vol.9 (29), p.896-956
issn 2330-0000
2330-0000
language eng
recordid cdi_crossref_primary_10_1090_btran_112
source DOAJ Directory of Open Access Journals; American Mathematical Society Publications (Freely Accessible); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Maximal connected -subgroups of maximal rank in connected reductive algebraic -groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A11%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximal%20connected%20-subgroups%20of%20maximal%20rank%20in%20connected%20reductive%20algebraic%20-groups&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society.%20Series%20B&rft.au=Sercombe,%20Damian&rft.date=2022-10-19&rft.volume=9&rft.issue=29&rft.spage=896&rft.epage=956&rft.pages=896-956&rft.issn=2330-0000&rft.eissn=2330-0000&rft_id=info:doi/10.1090/btran/112&rft_dat=%3Ccrossref%3E10_1090_btran_112%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true