Ordinary pseudorepresentations and modular forms
In this note, we observe that the techniques of our paper ``Pseudo-modularity and Iwasawa theory'' can be used to provide a new proof of some of the residually reducible modularity lifting results of Skinner and Wiles. In these cases, we have found that a deformation ring of ordinary pseud...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society. Series B 2017-12, Vol.4 (6), p.53-71 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 71 |
---|---|
container_issue | 6 |
container_start_page | 53 |
container_title | Proceedings of the American Mathematical Society. Series B |
container_volume | 4 |
creator | Preston Wake Carl Wang-Erickson |
description | In this note, we observe that the techniques of our paper ``Pseudo-modularity and Iwasawa theory'' can be used to provide a new proof of some of the residually reducible modularity lifting results of Skinner and Wiles. In these cases, we have found that a deformation ring of ordinary pseudorepresentations is equal to the Eisenstein local component of a Hida Hecke algebra. We also show that Vandiver's conjecture implies Sharifi's conjecture. |
doi_str_mv | 10.1090/bproc/29 |
format | Article |
fullrecord | <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_bproc_29</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_bproc_29</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1349-95fd76f156aa4a64d68e2c9d8415b875574cbc91df69ad4bc1096a16134921953</originalsourceid><addsrcrecordid>eNp1jztLA0EUhQdRMMSAP2HBxmbN3Nl57JQSfEEgjdbD3XnASnZnuZMU_ns3xsLG6pziO4dzGLsF_gDc8nU3UfZrYS_YQjQNr0EBXP7x12xVyifnHEAoo8yC8R2FfkT6qqYSjyFTnCiWOB7w0OexVDiGasjhuEeqUqah3LCrhPsSV7-6ZB_PT--b13q7e3nbPG5rhEba2qoUjE6gNKJELYNuo_A2tBJU1xqljPSdtxCSthhk5-f9GkGfwgKsapbs_tzrKZdCMbmJ-mEe6oC701n3c9YJO6N3ZxSH8j_1DZasUyo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ordinary pseudorepresentations and modular forms</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Preston Wake ; Carl Wang-Erickson</creator><creatorcontrib>Preston Wake ; Carl Wang-Erickson</creatorcontrib><description>In this note, we observe that the techniques of our paper ``Pseudo-modularity and Iwasawa theory'' can be used to provide a new proof of some of the residually reducible modularity lifting results of Skinner and Wiles. In these cases, we have found that a deformation ring of ordinary pseudorepresentations is equal to the Eisenstein local component of a Hida Hecke algebra. We also show that Vandiver's conjecture implies Sharifi's conjecture.</description><identifier>ISSN: 2330-1511</identifier><identifier>EISSN: 2330-1511</identifier><identifier>DOI: 10.1090/bproc/29</identifier><language>eng</language><ispartof>Proceedings of the American Mathematical Society. Series B, 2017-12, Vol.4 (6), p.53-71</ispartof><rights>Copyright 2017, by the author under Creative Commons Attribution-Noncommercial 3.0 License (CC BY NC 3.0)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a1349-95fd76f156aa4a64d68e2c9d8415b875574cbc91df69ad4bc1096a16134921953</citedby><cites>FETCH-LOGICAL-a1349-95fd76f156aa4a64d68e2c9d8415b875574cbc91df69ad4bc1096a16134921953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/bproc/2017-04-06/S2330-1511-2017-00029-4/S2330-1511-2017-00029-4.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/bproc/2017-04-06/S2330-1511-2017-00029-4/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>69,314,780,784,23324,27924,27925,77838,77848</link.rule.ids></links><search><creatorcontrib>Preston Wake</creatorcontrib><creatorcontrib>Carl Wang-Erickson</creatorcontrib><title>Ordinary pseudorepresentations and modular forms</title><title>Proceedings of the American Mathematical Society. Series B</title><description>In this note, we observe that the techniques of our paper ``Pseudo-modularity and Iwasawa theory'' can be used to provide a new proof of some of the residually reducible modularity lifting results of Skinner and Wiles. In these cases, we have found that a deformation ring of ordinary pseudorepresentations is equal to the Eisenstein local component of a Hida Hecke algebra. We also show that Vandiver's conjecture implies Sharifi's conjecture.</description><issn>2330-1511</issn><issn>2330-1511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1jztLA0EUhQdRMMSAP2HBxmbN3Nl57JQSfEEgjdbD3XnASnZnuZMU_ns3xsLG6pziO4dzGLsF_gDc8nU3UfZrYS_YQjQNr0EBXP7x12xVyifnHEAoo8yC8R2FfkT6qqYSjyFTnCiWOB7w0OexVDiGasjhuEeqUqah3LCrhPsSV7-6ZB_PT--b13q7e3nbPG5rhEba2qoUjE6gNKJELYNuo_A2tBJU1xqljPSdtxCSthhk5-f9GkGfwgKsapbs_tzrKZdCMbmJ-mEe6oC701n3c9YJO6N3ZxSH8j_1DZasUyo</recordid><startdate>20171218</startdate><enddate>20171218</enddate><creator>Preston Wake</creator><creator>Carl Wang-Erickson</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171218</creationdate><title>Ordinary pseudorepresentations and modular forms</title><author>Preston Wake ; Carl Wang-Erickson</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1349-95fd76f156aa4a64d68e2c9d8415b875574cbc91df69ad4bc1096a16134921953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Preston Wake</creatorcontrib><creatorcontrib>Carl Wang-Erickson</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society. Series B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Preston Wake</au><au>Carl Wang-Erickson</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ordinary pseudorepresentations and modular forms</atitle><jtitle>Proceedings of the American Mathematical Society. Series B</jtitle><date>2017-12-18</date><risdate>2017</risdate><volume>4</volume><issue>6</issue><spage>53</spage><epage>71</epage><pages>53-71</pages><issn>2330-1511</issn><eissn>2330-1511</eissn><abstract>In this note, we observe that the techniques of our paper ``Pseudo-modularity and Iwasawa theory'' can be used to provide a new proof of some of the residually reducible modularity lifting results of Skinner and Wiles. In these cases, we have found that a deformation ring of ordinary pseudorepresentations is equal to the Eisenstein local component of a Hida Hecke algebra. We also show that Vandiver's conjecture implies Sharifi's conjecture.</abstract><doi>10.1090/bproc/29</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2330-1511 |
ispartof | Proceedings of the American Mathematical Society. Series B, 2017-12, Vol.4 (6), p.53-71 |
issn | 2330-1511 2330-1511 |
language | eng |
recordid | cdi_crossref_primary_10_1090_bproc_29 |
source | American Mathematical Society Publications (Freely Accessible); EZB-FREE-00999 freely available EZB journals |
title | Ordinary pseudorepresentations and modular forms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A51%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ordinary%20pseudorepresentations%20and%20modular%20forms&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society.%20Series%20B&rft.au=Preston%20Wake&rft.date=2017-12-18&rft.volume=4&rft.issue=6&rft.spage=53&rft.epage=71&rft.pages=53-71&rft.issn=2330-1511&rft.eissn=2330-1511&rft_id=info:doi/10.1090/bproc/29&rft_dat=%3Cams_cross%3E10_1090_bproc_29%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |