Some new multi-cell Ramsey theoretic results
We extend an old Ramsey Theoretic result which guarantees sums of terms from all partition regular linear systems in one cell of a partition of the set \mathbb{N} of positive integers. We were motivated by a quite recent result which guarantees a sequence in one set with all of its sums two or more...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society. Series B 2021-12, Vol.8 (30), p.358-370 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 370 |
---|---|
container_issue | 30 |
container_start_page | 358 |
container_title | Proceedings of the American Mathematical Society. Series B |
container_volume | 8 |
creator | Bergelson, Vitaly Hindman, Neil |
description | We extend an old Ramsey Theoretic result which guarantees sums of terms from all partition regular linear systems in one cell of a partition of the set \mathbb{N} of positive integers. We were motivated by a quite recent result which guarantees a sequence in one set with all of its sums two or more at a time in the complement of that set. A simple instance of our new results is the following. Let \mathcal{P}_{f}(\mathbb{N}) be the set of finite nonempty subsets of \mathbb{N}. Given any finite partition {\mathcal{R}} of \mathbb{N}, there exist B_1, B_2, A_{1,2}, and A_{2,1} in {\mathcal{R}} and sequences \langle x_{1,n}\rangle _{n=1}^\infty and \langle x_{2,n}\rangle _{n=1}^\infty in \mathbb{N} such that (1) for each F\in \mathcal{P}_{f}(\mathbb{N}), \sum _{t\in F}x_{1,t}\in B_1 and \sum _{t\in F}x_{2,t}\in B_2 and (2) whenever F,G\in \mathcal{P}_{f}(\mathbb{N}) and \max F < \min G, one has \sum _{t\in F}x_{1,t}+\sum _{t\in G}x_{2,t}\in A_{1,2} and \sum _{t\in F}x_{2,t}+\sum _{t\in G}x_{1,t}\in A_{2,1}. The partition {\mathcal{R}} can be refined so that the cells B_1, B_2, A_{1,2}, and A_{2,1} must be pairwise disjoint. |
doi_str_mv | 10.1090/bproc/109 |
format | Article |
fullrecord | <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_bproc_109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_bproc_109</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2089-78986deb525e91ef6758b63beb330cd40bb2386c9d0b657c6d9c4031dcf640543</originalsourceid><addsrcrecordid>eNp9j0tLAzEUhYMoWGoX_oMs3AjG3iST11KKVqEg-FgPk-QOjsw4JRmR_ntT68KVq_vB_TicQ8g5h2sODpZ-m8awLHhEZkJKYFxxfvyHT8ki53cA4Fwoo8yMXD2PA9IP_KLDZz91LGDf06dmyLij0xuOCacu0IS5fPMZOWmbPuPi987J693ty-qebR7XD6ubDWsEWMeMdVZH9EoodBxbbZT1Wnr0pUeIFXgvpNXBRfBamaCjCxVIHkOrK1CVnJPLQ25IY84J23qbuqFJu5pDvV9a_yzdY3EvDm7p_I_2DUYBUcI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Some new multi-cell Ramsey theoretic results</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bergelson, Vitaly ; Hindman, Neil</creator><creatorcontrib>Bergelson, Vitaly ; Hindman, Neil</creatorcontrib><description>We extend an old Ramsey Theoretic result which guarantees sums of terms from all partition regular linear systems in one cell of a partition of the set \mathbb{N} of positive integers. We were motivated by a quite recent result which guarantees a sequence in one set with all of its sums two or more at a time in the complement of that set. A simple instance of our new results is the following. Let \mathcal{P}_{f}(\mathbb{N}) be the set of finite nonempty subsets of \mathbb{N}. Given any finite partition {\mathcal{R}} of \mathbb{N}, there exist B_1, B_2, A_{1,2}, and A_{2,1} in {\mathcal{R}} and sequences \langle x_{1,n}\rangle _{n=1}^\infty and \langle x_{2,n}\rangle _{n=1}^\infty in \mathbb{N} such that (1) for each F\in \mathcal{P}_{f}(\mathbb{N}), \sum _{t\in F}x_{1,t}\in B_1 and \sum _{t\in F}x_{2,t}\in B_2 and (2) whenever F,G\in \mathcal{P}_{f}(\mathbb{N}) and \max F < \min G, one has \sum _{t\in F}x_{1,t}+\sum _{t\in G}x_{2,t}\in A_{1,2} and \sum _{t\in F}x_{2,t}+\sum _{t\in G}x_{1,t}\in A_{2,1}. The partition {\mathcal{R}} can be refined so that the cells B_1, B_2, A_{1,2}, and A_{2,1} must be pairwise disjoint.</description><identifier>ISSN: 2330-1511</identifier><identifier>EISSN: 2330-1511</identifier><identifier>DOI: 10.1090/bproc/109</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Research article</subject><ispartof>Proceedings of the American Mathematical Society. Series B, 2021-12, Vol.8 (30), p.358-370</ispartof><rights>Copyright 2021 by the authors under Creative Commons Attribution-Noncommercial 3.0 License (CC BY NC 3.0)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a2089-78986deb525e91ef6758b63beb330cd40bb2386c9d0b657c6d9c4031dcf640543</citedby><cites>FETCH-LOGICAL-a2089-78986deb525e91ef6758b63beb330cd40bb2386c9d0b657c6d9c4031dcf640543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/bproc/2021-08-30/S2330-1511-2021-00109-8/S2330-1511-2021-00109-8.pdf$$EPDF$$P50$$Gams$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ams.org/bproc/2021-08-30/S2330-1511-2021-00109-8/$$EHTML$$P50$$Gams$$Hfree_for_read</linktohtml><link.rule.ids>69,314,776,780,23303,27901,27902,77807,77817</link.rule.ids></links><search><creatorcontrib>Bergelson, Vitaly</creatorcontrib><creatorcontrib>Hindman, Neil</creatorcontrib><title>Some new multi-cell Ramsey theoretic results</title><title>Proceedings of the American Mathematical Society. Series B</title><addtitle>Proc. Amer. Math. Soc. Ser. B</addtitle><description>We extend an old Ramsey Theoretic result which guarantees sums of terms from all partition regular linear systems in one cell of a partition of the set \mathbb{N} of positive integers. We were motivated by a quite recent result which guarantees a sequence in one set with all of its sums two or more at a time in the complement of that set. A simple instance of our new results is the following. Let \mathcal{P}_{f}(\mathbb{N}) be the set of finite nonempty subsets of \mathbb{N}. Given any finite partition {\mathcal{R}} of \mathbb{N}, there exist B_1, B_2, A_{1,2}, and A_{2,1} in {\mathcal{R}} and sequences \langle x_{1,n}\rangle _{n=1}^\infty and \langle x_{2,n}\rangle _{n=1}^\infty in \mathbb{N} such that (1) for each F\in \mathcal{P}_{f}(\mathbb{N}), \sum _{t\in F}x_{1,t}\in B_1 and \sum _{t\in F}x_{2,t}\in B_2 and (2) whenever F,G\in \mathcal{P}_{f}(\mathbb{N}) and \max F < \min G, one has \sum _{t\in F}x_{1,t}+\sum _{t\in G}x_{2,t}\in A_{1,2} and \sum _{t\in F}x_{2,t}+\sum _{t\in G}x_{1,t}\in A_{2,1}. The partition {\mathcal{R}} can be refined so that the cells B_1, B_2, A_{1,2}, and A_{2,1} must be pairwise disjoint.</description><subject>Research article</subject><issn>2330-1511</issn><issn>2330-1511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9j0tLAzEUhYMoWGoX_oMs3AjG3iST11KKVqEg-FgPk-QOjsw4JRmR_ntT68KVq_vB_TicQ8g5h2sODpZ-m8awLHhEZkJKYFxxfvyHT8ki53cA4Fwoo8yMXD2PA9IP_KLDZz91LGDf06dmyLij0xuOCacu0IS5fPMZOWmbPuPi987J693ty-qebR7XD6ubDWsEWMeMdVZH9EoodBxbbZT1Wnr0pUeIFXgvpNXBRfBamaCjCxVIHkOrK1CVnJPLQ25IY84J23qbuqFJu5pDvV9a_yzdY3EvDm7p_I_2DUYBUcI</recordid><startdate>20211209</startdate><enddate>20211209</enddate><creator>Bergelson, Vitaly</creator><creator>Hindman, Neil</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211209</creationdate><title>Some new multi-cell Ramsey theoretic results</title><author>Bergelson, Vitaly ; Hindman, Neil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2089-78986deb525e91ef6758b63beb330cd40bb2386c9d0b657c6d9c4031dcf640543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Research article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bergelson, Vitaly</creatorcontrib><creatorcontrib>Hindman, Neil</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society. Series B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bergelson, Vitaly</au><au>Hindman, Neil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some new multi-cell Ramsey theoretic results</atitle><jtitle>Proceedings of the American Mathematical Society. Series B</jtitle><stitle>Proc. Amer. Math. Soc. Ser. B</stitle><date>2021-12-09</date><risdate>2021</risdate><volume>8</volume><issue>30</issue><spage>358</spage><epage>370</epage><pages>358-370</pages><issn>2330-1511</issn><eissn>2330-1511</eissn><abstract>We extend an old Ramsey Theoretic result which guarantees sums of terms from all partition regular linear systems in one cell of a partition of the set \mathbb{N} of positive integers. We were motivated by a quite recent result which guarantees a sequence in one set with all of its sums two or more at a time in the complement of that set. A simple instance of our new results is the following. Let \mathcal{P}_{f}(\mathbb{N}) be the set of finite nonempty subsets of \mathbb{N}. Given any finite partition {\mathcal{R}} of \mathbb{N}, there exist B_1, B_2, A_{1,2}, and A_{2,1} in {\mathcal{R}} and sequences \langle x_{1,n}\rangle _{n=1}^\infty and \langle x_{2,n}\rangle _{n=1}^\infty in \mathbb{N} such that (1) for each F\in \mathcal{P}_{f}(\mathbb{N}), \sum _{t\in F}x_{1,t}\in B_1 and \sum _{t\in F}x_{2,t}\in B_2 and (2) whenever F,G\in \mathcal{P}_{f}(\mathbb{N}) and \max F < \min G, one has \sum _{t\in F}x_{1,t}+\sum _{t\in G}x_{2,t}\in A_{1,2} and \sum _{t\in F}x_{2,t}+\sum _{t\in G}x_{1,t}\in A_{2,1}. The partition {\mathcal{R}} can be refined so that the cells B_1, B_2, A_{1,2}, and A_{2,1} must be pairwise disjoint.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/bproc/109</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2330-1511 |
ispartof | Proceedings of the American Mathematical Society. Series B, 2021-12, Vol.8 (30), p.358-370 |
issn | 2330-1511 2330-1511 |
language | eng |
recordid | cdi_crossref_primary_10_1090_bproc_109 |
source | American Mathematical Society Publications (Freely Accessible); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Research article |
title | Some new multi-cell Ramsey theoretic results |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T18%3A13%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20new%20multi-cell%20Ramsey%20theoretic%20results&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society.%20Series%20B&rft.au=Bergelson,%20Vitaly&rft.date=2021-12-09&rft.volume=8&rft.issue=30&rft.spage=358&rft.epage=370&rft.pages=358-370&rft.issn=2330-1511&rft.eissn=2330-1511&rft_id=info:doi/10.1090/bproc/109&rft_dat=%3Cams_cross%3E10_1090_bproc_109%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |