A Maximum Subsurface Biomass on Mars from Untapped Free Energy: CO and H 2 as Potential Antibiosignatures
Whether extant life exists in the martian subsurface is an open question. High concentrations of photochemically produced CO and H in the otherwise oxidizing martian atmosphere represent untapped sources of biologically useful free energy. These out-of-equilibrium species diffuse into the regolith,...
Gespeichert in:
Veröffentlicht in: | Astrobiology 2019-05, Vol.19 (5), p.655-668 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 668 |
---|---|
container_issue | 5 |
container_start_page | 655 |
container_title | Astrobiology |
container_volume | 19 |
creator | Sholes, Steven F Krissansen-Totton, Joshua Catling, David C |
description | Whether extant life exists in the martian subsurface is an open question. High concentrations of photochemically produced CO and H
in the otherwise oxidizing martian atmosphere represent untapped sources of biologically useful free energy. These out-of-equilibrium species diffuse into the regolith, so subsurface microbes could use them as a source of energy and carbon. Indeed, CO oxidation and methanogenesis are relatively simple and evolutionarily ancient metabolisms on Earth. Consequently, assuming CO- or H
-consuming metabolisms would evolve on Mars, the persistence of CO and H
in the martian atmosphere sets limits on subsurface metabolic activity. In this study, we constrain such maximum subsurface metabolic activity on Mars using a one-dimensional photochemical model with a hypothetical global biological sink on atmospheric CO and H
. We increase the biological sink until the modeled atmospheric composition diverges from observed abundances. We find maximum biological downward subsurface sinks of 1.5 × 10
molecules/(cm
·s) for CO and 1.9 × 10
molecules/(cm
·s
) for H
. These convert to a maximum metabolizing biomass of ≲10
cells or ≤2 × 10
kg, equivalent to ≤10
-10
of Earth's biomass, depending on the terrestrial estimate. Diffusion calculations suggest that this upper biomass limit applies to the top few kilometers of the martian crust in communication with the atmosphere at low to mid-latitudes. This biomass limit is more robust than previous estimates because we test multiple possible chemoautotrophic ecosystems over a broad parameter space of tunable model variables using an updated photochemical model with precise atmospheric concentrations and uncertainties from
. Our results of sparse or absent life in the martian subsurface also demonstrate how the atmospheric redox pairs of CO-O
and H
-O
may constitute antibiosignatures, which may be relevant to excluding life on exoplanets. |
doi_str_mv | 10.1089/ast.2018.1835 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1089_ast_2018_1835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30950631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-d9fc5d3cbfc84b8636fe853f8684fecc121de816586149a1bfdae7758bd2b91f3</originalsourceid><addsrcrecordid>eNo9kM1Kw0AYRQdRbK0u3cr3AqnzZTLJxF0trRUqFbTrML8l0vwwk4B9exOqru6Fe7iLQ8g90jlSkT_K0M1jimKOgvELMkXOs0jQjF6OnWGENEsm5CaEL0qRxXl6TSaM5pymDKekXMCb_C6rvoKPXoXeO6ktPJdNJUOAph5WH8D5poJ93cm2tQbW3lpY1dYfTk-w3IGsDWwgBhngvels3ZXyCIshVNmE8lDLrvc23JIrJ4_B3v3mjOzXq8_lJtruXl6Xi22kMeNdZHKnuWFaOS0SJVKWOis4cyIVibNaY4zGCky5SDHJJSpnpM0yLpSJVY6OzUh0_tW-CcFbV7S-rKQ_FUiLUVkxKCtGZcWobOAfznzbq8qaf_rPEfsBppFn6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Maximum Subsurface Biomass on Mars from Untapped Free Energy: CO and H 2 as Potential Antibiosignatures</title><source>Alma/SFX Local Collection</source><creator>Sholes, Steven F ; Krissansen-Totton, Joshua ; Catling, David C</creator><creatorcontrib>Sholes, Steven F ; Krissansen-Totton, Joshua ; Catling, David C</creatorcontrib><description>Whether extant life exists in the martian subsurface is an open question. High concentrations of photochemically produced CO and H
in the otherwise oxidizing martian atmosphere represent untapped sources of biologically useful free energy. These out-of-equilibrium species diffuse into the regolith, so subsurface microbes could use them as a source of energy and carbon. Indeed, CO oxidation and methanogenesis are relatively simple and evolutionarily ancient metabolisms on Earth. Consequently, assuming CO- or H
-consuming metabolisms would evolve on Mars, the persistence of CO and H
in the martian atmosphere sets limits on subsurface metabolic activity. In this study, we constrain such maximum subsurface metabolic activity on Mars using a one-dimensional photochemical model with a hypothetical global biological sink on atmospheric CO and H
. We increase the biological sink until the modeled atmospheric composition diverges from observed abundances. We find maximum biological downward subsurface sinks of 1.5 × 10
molecules/(cm
·s) for CO and 1.9 × 10
molecules/(cm
·s
) for H
. These convert to a maximum metabolizing biomass of ≲10
cells or ≤2 × 10
kg, equivalent to ≤10
-10
of Earth's biomass, depending on the terrestrial estimate. Diffusion calculations suggest that this upper biomass limit applies to the top few kilometers of the martian crust in communication with the atmosphere at low to mid-latitudes. This biomass limit is more robust than previous estimates because we test multiple possible chemoautotrophic ecosystems over a broad parameter space of tunable model variables using an updated photochemical model with precise atmospheric concentrations and uncertainties from
. Our results of sparse or absent life in the martian subsurface also demonstrate how the atmospheric redox pairs of CO-O
and H
-O
may constitute antibiosignatures, which may be relevant to excluding life on exoplanets.</description><identifier>ISSN: 1531-1074</identifier><identifier>EISSN: 1557-8070</identifier><identifier>DOI: 10.1089/ast.2018.1835</identifier><identifier>PMID: 30950631</identifier><language>eng</language><publisher>United States</publisher><ispartof>Astrobiology, 2019-05, Vol.19 (5), p.655-668</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c175t-d9fc5d3cbfc84b8636fe853f8684fecc121de816586149a1bfdae7758bd2b91f3</citedby><cites>FETCH-LOGICAL-c175t-d9fc5d3cbfc84b8636fe853f8684fecc121de816586149a1bfdae7758bd2b91f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30950631$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sholes, Steven F</creatorcontrib><creatorcontrib>Krissansen-Totton, Joshua</creatorcontrib><creatorcontrib>Catling, David C</creatorcontrib><title>A Maximum Subsurface Biomass on Mars from Untapped Free Energy: CO and H 2 as Potential Antibiosignatures</title><title>Astrobiology</title><addtitle>Astrobiology</addtitle><description>Whether extant life exists in the martian subsurface is an open question. High concentrations of photochemically produced CO and H
in the otherwise oxidizing martian atmosphere represent untapped sources of biologically useful free energy. These out-of-equilibrium species diffuse into the regolith, so subsurface microbes could use them as a source of energy and carbon. Indeed, CO oxidation and methanogenesis are relatively simple and evolutionarily ancient metabolisms on Earth. Consequently, assuming CO- or H
-consuming metabolisms would evolve on Mars, the persistence of CO and H
in the martian atmosphere sets limits on subsurface metabolic activity. In this study, we constrain such maximum subsurface metabolic activity on Mars using a one-dimensional photochemical model with a hypothetical global biological sink on atmospheric CO and H
. We increase the biological sink until the modeled atmospheric composition diverges from observed abundances. We find maximum biological downward subsurface sinks of 1.5 × 10
molecules/(cm
·s) for CO and 1.9 × 10
molecules/(cm
·s
) for H
. These convert to a maximum metabolizing biomass of ≲10
cells or ≤2 × 10
kg, equivalent to ≤10
-10
of Earth's biomass, depending on the terrestrial estimate. Diffusion calculations suggest that this upper biomass limit applies to the top few kilometers of the martian crust in communication with the atmosphere at low to mid-latitudes. This biomass limit is more robust than previous estimates because we test multiple possible chemoautotrophic ecosystems over a broad parameter space of tunable model variables using an updated photochemical model with precise atmospheric concentrations and uncertainties from
. Our results of sparse or absent life in the martian subsurface also demonstrate how the atmospheric redox pairs of CO-O
and H
-O
may constitute antibiosignatures, which may be relevant to excluding life on exoplanets.</description><issn>1531-1074</issn><issn>1557-8070</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Kw0AYRQdRbK0u3cr3AqnzZTLJxF0trRUqFbTrML8l0vwwk4B9exOqru6Fe7iLQ8g90jlSkT_K0M1jimKOgvELMkXOs0jQjF6OnWGENEsm5CaEL0qRxXl6TSaM5pymDKekXMCb_C6rvoKPXoXeO6ktPJdNJUOAph5WH8D5poJ93cm2tQbW3lpY1dYfTk-w3IGsDWwgBhngvels3ZXyCIshVNmE8lDLrvc23JIrJ4_B3v3mjOzXq8_lJtruXl6Xi22kMeNdZHKnuWFaOS0SJVKWOis4cyIVibNaY4zGCky5SDHJJSpnpM0yLpSJVY6OzUh0_tW-CcFbV7S-rKQ_FUiLUVkxKCtGZcWobOAfznzbq8qaf_rPEfsBppFn6Q</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Sholes, Steven F</creator><creator>Krissansen-Totton, Joshua</creator><creator>Catling, David C</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201905</creationdate><title>A Maximum Subsurface Biomass on Mars from Untapped Free Energy: CO and H 2 as Potential Antibiosignatures</title><author>Sholes, Steven F ; Krissansen-Totton, Joshua ; Catling, David C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-d9fc5d3cbfc84b8636fe853f8684fecc121de816586149a1bfdae7758bd2b91f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sholes, Steven F</creatorcontrib><creatorcontrib>Krissansen-Totton, Joshua</creatorcontrib><creatorcontrib>Catling, David C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Astrobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sholes, Steven F</au><au>Krissansen-Totton, Joshua</au><au>Catling, David C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Maximum Subsurface Biomass on Mars from Untapped Free Energy: CO and H 2 as Potential Antibiosignatures</atitle><jtitle>Astrobiology</jtitle><addtitle>Astrobiology</addtitle><date>2019-05</date><risdate>2019</risdate><volume>19</volume><issue>5</issue><spage>655</spage><epage>668</epage><pages>655-668</pages><issn>1531-1074</issn><eissn>1557-8070</eissn><abstract>Whether extant life exists in the martian subsurface is an open question. High concentrations of photochemically produced CO and H
in the otherwise oxidizing martian atmosphere represent untapped sources of biologically useful free energy. These out-of-equilibrium species diffuse into the regolith, so subsurface microbes could use them as a source of energy and carbon. Indeed, CO oxidation and methanogenesis are relatively simple and evolutionarily ancient metabolisms on Earth. Consequently, assuming CO- or H
-consuming metabolisms would evolve on Mars, the persistence of CO and H
in the martian atmosphere sets limits on subsurface metabolic activity. In this study, we constrain such maximum subsurface metabolic activity on Mars using a one-dimensional photochemical model with a hypothetical global biological sink on atmospheric CO and H
. We increase the biological sink until the modeled atmospheric composition diverges from observed abundances. We find maximum biological downward subsurface sinks of 1.5 × 10
molecules/(cm
·s) for CO and 1.9 × 10
molecules/(cm
·s
) for H
. These convert to a maximum metabolizing biomass of ≲10
cells or ≤2 × 10
kg, equivalent to ≤10
-10
of Earth's biomass, depending on the terrestrial estimate. Diffusion calculations suggest that this upper biomass limit applies to the top few kilometers of the martian crust in communication with the atmosphere at low to mid-latitudes. This biomass limit is more robust than previous estimates because we test multiple possible chemoautotrophic ecosystems over a broad parameter space of tunable model variables using an updated photochemical model with precise atmospheric concentrations and uncertainties from
. Our results of sparse or absent life in the martian subsurface also demonstrate how the atmospheric redox pairs of CO-O
and H
-O
may constitute antibiosignatures, which may be relevant to excluding life on exoplanets.</abstract><cop>United States</cop><pmid>30950631</pmid><doi>10.1089/ast.2018.1835</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1531-1074 |
ispartof | Astrobiology, 2019-05, Vol.19 (5), p.655-668 |
issn | 1531-1074 1557-8070 |
language | eng |
recordid | cdi_crossref_primary_10_1089_ast_2018_1835 |
source | Alma/SFX Local Collection |
title | A Maximum Subsurface Biomass on Mars from Untapped Free Energy: CO and H 2 as Potential Antibiosignatures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A10%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Maximum%20Subsurface%20Biomass%20on%20Mars%20from%20Untapped%20Free%20Energy:%20CO%20and%20H%202%20as%20Potential%20Antibiosignatures&rft.jtitle=Astrobiology&rft.au=Sholes,%20Steven%20F&rft.date=2019-05&rft.volume=19&rft.issue=5&rft.spage=655&rft.epage=668&rft.pages=655-668&rft.issn=1531-1074&rft.eissn=1557-8070&rft_id=info:doi/10.1089/ast.2018.1835&rft_dat=%3Cpubmed_cross%3E30950631%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/30950631&rfr_iscdi=true |