CResU-Net: a method for landslide mapping using deep learning
Landslides, which can occur due to earthquakes and heavy rainfall, pose significant challenges across large areas. To effectively manage these disasters, it is crucial to have fast and reliable automatic detection methods for mapping landslides. In recent years, deep learning methods, particularly c...
Gespeichert in:
Veröffentlicht in: | Machine learning: science and technology 2024-09, Vol.5 (3), p.35008 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 35008 |
container_title | Machine learning: science and technology |
container_volume | 5 |
creator | Pham, Thang M Do, Nam Pham, Ha T T Bui, Hanh T Do, Thang T Hoang, Manh V |
description | Landslides, which can occur due to earthquakes and heavy rainfall, pose significant challenges across large areas. To effectively manage these disasters, it is crucial to have fast and reliable automatic detection methods for mapping landslides. In recent years, deep learning methods, particularly convolutional neural and fully convolutional networks, have been successfully applied to various fields, including landslide detection, with remarkable accuracy and high reliability. However, most of these models achieved high detection performance based on high-resolution satellite images. In this research, we introduce a modified Residual U-Net combined with the Convolutional Block Attention Module, a deep learning method, for automatic landslide mapping. The proposed method is trained and assessed using freely available data sets acquired from Sentinel-2 sensors, digital elevation models, and slope data from ALOS PALSAR with a spatial resolution of 10 m. Compared to the original ResU-Net model, the proposed architecture achieved higher accuracy, with the F1-score improving by 9.1% for the landslide class. Additionally, it offers a lower computational cost, with 1.38 giga multiply-accumulate operations per second (GMACS) needed to execute the model compared to 2.68 GMACS in the original model. The source code is available at https://github.com/manhhv87/LandSlideMapping.git . |
doi_str_mv | 10.1088/2632-2153/ad5f17 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2632_2153_ad5f17</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9fcd1a39f0bd49d18032c5b041f263ba</doaj_id><sourcerecordid>3079130772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-e76ff7231c48850376ceab493adf10bfafd4e0dc803c170e7976dfccc7eab5af3</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWGrvHhc8eHHtZLNpdgUPUvwoFAWx5zCbj7pl26zJ9uB_b9YV9SBeZibDm5fHj5BTCpcUimKazViWZpSzKWpuqTggo-_V4a_5mExC2ABAxinjGYzI9fzZhFX6aLqrBJOt6V6dTqzzSYM7HZpam2SLbVvv1sk-9FUb0yaNQb-LrxNyZLEJZvLVx2R1d_syf0iXT_eL-c0yVYzRLjViZq3IGFV5UXBgYqYMVnnJUFsKlUWrcwNaFcAUFWBEKWbaKqVElHG0bEwWg692uJGtr7fo36XDWn4unF9L9F2tGiNLqzRFVlqodF5qGj0zxSvIqY0YKoxeZ4NX693b3oRObtze72J8yUCUNJYYdUxgUCnvQvDGfv9KQfbMZQ9V9lDlwDyeXAwntWt_PP-Rn_8h3zYxEJdMAuMAhWy1ZR9o0I6T</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3079130772</pqid></control><display><type>article</type><title>CResU-Net: a method for landslide mapping using deep learning</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Pham, Thang M ; Do, Nam ; Pham, Ha T T ; Bui, Hanh T ; Do, Thang T ; Hoang, Manh V</creator><creatorcontrib>Pham, Thang M ; Do, Nam ; Pham, Ha T T ; Bui, Hanh T ; Do, Thang T ; Hoang, Manh V</creatorcontrib><description>Landslides, which can occur due to earthquakes and heavy rainfall, pose significant challenges across large areas. To effectively manage these disasters, it is crucial to have fast and reliable automatic detection methods for mapping landslides. In recent years, deep learning methods, particularly convolutional neural and fully convolutional networks, have been successfully applied to various fields, including landslide detection, with remarkable accuracy and high reliability. However, most of these models achieved high detection performance based on high-resolution satellite images. In this research, we introduce a modified Residual U-Net combined with the Convolutional Block Attention Module, a deep learning method, for automatic landslide mapping. The proposed method is trained and assessed using freely available data sets acquired from Sentinel-2 sensors, digital elevation models, and slope data from ALOS PALSAR with a spatial resolution of 10 m. Compared to the original ResU-Net model, the proposed architecture achieved higher accuracy, with the F1-score improving by 9.1% for the landslide class. Additionally, it offers a lower computational cost, with 1.38 giga multiply-accumulate operations per second (GMACS) needed to execute the model compared to 2.68 GMACS in the original model. The source code is available at https://github.com/manhhv87/LandSlideMapping.git .</description><identifier>ISSN: 2632-2153</identifier><identifier>EISSN: 2632-2153</identifier><identifier>DOI: 10.1088/2632-2153/ad5f17</identifier><identifier>CODEN: MLSTCK</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Accuracy ; CBAM ; Computational efficiency ; Data acquisition ; Deep learning ; Digital Elevation Models ; Digital imaging ; Digital mapping ; Image acquisition ; Image resolution ; landslide mapping ; Landslides ; Landslides & mudslides ; Rainfall ; remote sensing ; ResU-Net ; Satellite imagery ; Source code ; Spatial data ; Spatial resolution</subject><ispartof>Machine learning: science and technology, 2024-09, Vol.5 (3), p.35008</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><rights>2024 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c331t-e76ff7231c48850376ceab493adf10bfafd4e0dc803c170e7976dfccc7eab5af3</cites><orcidid>0000-0003-2180-0253</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2632-2153/ad5f17/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2100,27923,27924,38889,53866</link.rule.ids></links><search><creatorcontrib>Pham, Thang M</creatorcontrib><creatorcontrib>Do, Nam</creatorcontrib><creatorcontrib>Pham, Ha T T</creatorcontrib><creatorcontrib>Bui, Hanh T</creatorcontrib><creatorcontrib>Do, Thang T</creatorcontrib><creatorcontrib>Hoang, Manh V</creatorcontrib><title>CResU-Net: a method for landslide mapping using deep learning</title><title>Machine learning: science and technology</title><addtitle>MLST</addtitle><addtitle>Mach. Learn.: Sci. Technol</addtitle><description>Landslides, which can occur due to earthquakes and heavy rainfall, pose significant challenges across large areas. To effectively manage these disasters, it is crucial to have fast and reliable automatic detection methods for mapping landslides. In recent years, deep learning methods, particularly convolutional neural and fully convolutional networks, have been successfully applied to various fields, including landslide detection, with remarkable accuracy and high reliability. However, most of these models achieved high detection performance based on high-resolution satellite images. In this research, we introduce a modified Residual U-Net combined with the Convolutional Block Attention Module, a deep learning method, for automatic landslide mapping. The proposed method is trained and assessed using freely available data sets acquired from Sentinel-2 sensors, digital elevation models, and slope data from ALOS PALSAR with a spatial resolution of 10 m. Compared to the original ResU-Net model, the proposed architecture achieved higher accuracy, with the F1-score improving by 9.1% for the landslide class. Additionally, it offers a lower computational cost, with 1.38 giga multiply-accumulate operations per second (GMACS) needed to execute the model compared to 2.68 GMACS in the original model. The source code is available at https://github.com/manhhv87/LandSlideMapping.git .</description><subject>Accuracy</subject><subject>CBAM</subject><subject>Computational efficiency</subject><subject>Data acquisition</subject><subject>Deep learning</subject><subject>Digital Elevation Models</subject><subject>Digital imaging</subject><subject>Digital mapping</subject><subject>Image acquisition</subject><subject>Image resolution</subject><subject>landslide mapping</subject><subject>Landslides</subject><subject>Landslides & mudslides</subject><subject>Rainfall</subject><subject>remote sensing</subject><subject>ResU-Net</subject><subject>Satellite imagery</subject><subject>Source code</subject><subject>Spatial data</subject><subject>Spatial resolution</subject><issn>2632-2153</issn><issn>2632-2153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNp9kM1LAzEQxYMoWGrvHhc8eHHtZLNpdgUPUvwoFAWx5zCbj7pl26zJ9uB_b9YV9SBeZibDm5fHj5BTCpcUimKazViWZpSzKWpuqTggo-_V4a_5mExC2ABAxinjGYzI9fzZhFX6aLqrBJOt6V6dTqzzSYM7HZpam2SLbVvv1sk-9FUb0yaNQb-LrxNyZLEJZvLVx2R1d_syf0iXT_eL-c0yVYzRLjViZq3IGFV5UXBgYqYMVnnJUFsKlUWrcwNaFcAUFWBEKWbaKqVElHG0bEwWg692uJGtr7fo36XDWn4unF9L9F2tGiNLqzRFVlqodF5qGj0zxSvIqY0YKoxeZ4NX693b3oRObtze72J8yUCUNJYYdUxgUCnvQvDGfv9KQfbMZQ9V9lDlwDyeXAwntWt_PP-Rn_8h3zYxEJdMAuMAhWy1ZR9o0I6T</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Pham, Thang M</creator><creator>Do, Nam</creator><creator>Pham, Ha T T</creator><creator>Bui, Hanh T</creator><creator>Do, Thang T</creator><creator>Hoang, Manh V</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2P</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2180-0253</orcidid></search><sort><creationdate>20240901</creationdate><title>CResU-Net: a method for landslide mapping using deep learning</title><author>Pham, Thang M ; Do, Nam ; Pham, Ha T T ; Bui, Hanh T ; Do, Thang T ; Hoang, Manh V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-e76ff7231c48850376ceab493adf10bfafd4e0dc803c170e7976dfccc7eab5af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>CBAM</topic><topic>Computational efficiency</topic><topic>Data acquisition</topic><topic>Deep learning</topic><topic>Digital Elevation Models</topic><topic>Digital imaging</topic><topic>Digital mapping</topic><topic>Image acquisition</topic><topic>Image resolution</topic><topic>landslide mapping</topic><topic>Landslides</topic><topic>Landslides & mudslides</topic><topic>Rainfall</topic><topic>remote sensing</topic><topic>ResU-Net</topic><topic>Satellite imagery</topic><topic>Source code</topic><topic>Spatial data</topic><topic>Spatial resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pham, Thang M</creatorcontrib><creatorcontrib>Do, Nam</creatorcontrib><creatorcontrib>Pham, Ha T T</creatorcontrib><creatorcontrib>Bui, Hanh T</creatorcontrib><creatorcontrib>Do, Thang T</creatorcontrib><creatorcontrib>Hoang, Manh V</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Machine learning: science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pham, Thang M</au><au>Do, Nam</au><au>Pham, Ha T T</au><au>Bui, Hanh T</au><au>Do, Thang T</au><au>Hoang, Manh V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CResU-Net: a method for landslide mapping using deep learning</atitle><jtitle>Machine learning: science and technology</jtitle><stitle>MLST</stitle><addtitle>Mach. Learn.: Sci. Technol</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>5</volume><issue>3</issue><spage>35008</spage><pages>35008-</pages><issn>2632-2153</issn><eissn>2632-2153</eissn><coden>MLSTCK</coden><abstract>Landslides, which can occur due to earthquakes and heavy rainfall, pose significant challenges across large areas. To effectively manage these disasters, it is crucial to have fast and reliable automatic detection methods for mapping landslides. In recent years, deep learning methods, particularly convolutional neural and fully convolutional networks, have been successfully applied to various fields, including landslide detection, with remarkable accuracy and high reliability. However, most of these models achieved high detection performance based on high-resolution satellite images. In this research, we introduce a modified Residual U-Net combined with the Convolutional Block Attention Module, a deep learning method, for automatic landslide mapping. The proposed method is trained and assessed using freely available data sets acquired from Sentinel-2 sensors, digital elevation models, and slope data from ALOS PALSAR with a spatial resolution of 10 m. Compared to the original ResU-Net model, the proposed architecture achieved higher accuracy, with the F1-score improving by 9.1% for the landslide class. Additionally, it offers a lower computational cost, with 1.38 giga multiply-accumulate operations per second (GMACS) needed to execute the model compared to 2.68 GMACS in the original model. The source code is available at https://github.com/manhhv87/LandSlideMapping.git .</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2632-2153/ad5f17</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2180-0253</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2632-2153 |
ispartof | Machine learning: science and technology, 2024-09, Vol.5 (3), p.35008 |
issn | 2632-2153 2632-2153 |
language | eng |
recordid | cdi_crossref_primary_10_1088_2632_2153_ad5f17 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy CBAM Computational efficiency Data acquisition Deep learning Digital Elevation Models Digital imaging Digital mapping Image acquisition Image resolution landslide mapping Landslides Landslides & mudslides Rainfall remote sensing ResU-Net Satellite imagery Source code Spatial data Spatial resolution |
title | CResU-Net: a method for landslide mapping using deep learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A35%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CResU-Net:%20a%20method%20for%20landslide%20mapping%20using%20deep%20learning&rft.jtitle=Machine%20learning:%20science%20and%20technology&rft.au=Pham,%20Thang%20M&rft.date=2024-09-01&rft.volume=5&rft.issue=3&rft.spage=35008&rft.pages=35008-&rft.issn=2632-2153&rft.eissn=2632-2153&rft.coden=MLSTCK&rft_id=info:doi/10.1088/2632-2153/ad5f17&rft_dat=%3Cproquest_cross%3E3079130772%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3079130772&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_9fcd1a39f0bd49d18032c5b041f263ba&rfr_iscdi=true |