Scalable neural quantum states architecture for quantum chemistry

Variational optimization of neural-network representations of quantum states has been successfully applied to solve interacting fermionic problems. Despite rapid developments, significant scalability challenges arise when considering molecules of large scale, which correspond to non-locally interact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning: science and technology 2023-06, Vol.4 (2), p.25034
Hauptverfasser: Zhao, Tianchen, Stokes, James, Veerapaneni, Shravan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 25034
container_title Machine learning: science and technology
container_volume 4
creator Zhao, Tianchen
Stokes, James
Veerapaneni, Shravan
description Variational optimization of neural-network representations of quantum states has been successfully applied to solve interacting fermionic problems. Despite rapid developments, significant scalability challenges arise when considering molecules of large scale, which correspond to non-locally interacting quantum spin Hamiltonians consisting of sums of thousands or even millions of Pauli operators. In this work, we introduce scalable parallelization strategies to improve neural-network-based variational quantum Monte Carlo calculations for ab-initio quantum chemistry applications. We establish GPU-supported local energy parallelism to compute the optimization objective for Hamiltonians of potentially complex molecules. Using autoregressive sampling techniques, we demonstrate systematic improvement in wall-clock timings required to achieve coupled cluster with up to double excitations baseline target energies. The performance is further enhanced by accommodating the structure of resultant spin Hamiltonians into the autoregressive sampling ordering. The algorithm achieves promising performance in comparison with the classical approximate methods and exhibits both running time and scalability advantages over existing neural-network based methods.
doi_str_mv 10.1088/2632-2153/acdb2f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2632_2153_acdb2f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5824096330bd4fde9981a2e1fc89ff70</doaj_id><sourcerecordid>2829093203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-fa6b7c237e7088ed80dddc68ebec2cfe7666d0aa81a3fa6eb622d04060764d3b3</originalsourceid><addsrcrecordid>eNp9kb1PwzAQxSMEElXpzhiJgYXQi504zlhVfFSqxADMlmOfaaqkSW1n6H-PS1BhQEx3Ov_u3dNzFF2ncJ8C53PCKElImtO5VLoi5iyanEbnv_rLaObcFgBIntKcwCRavCrZyKrBeIeDlU28H-TOD23svPToYmnVpvao_GAxNp09vasNtrXz9nAVXRjZOJx912n0_vjwtnxO1i9Pq-Vinags4z4xklWFIrTAIjhGzUFrrRjHChVRBgvGmAYpeSppYLFihGjIgEHBMk0rOo1Wo67u5Fb0tm6lPYhO1uJr0NkPIa2vVYMi5ySDklEKlc6MxrIMqgRTo3hpTAFB62bU6m23H9B5se0Guwv2BeGkhJISoIGCkVK2c86iOV1NQRxzF8dgxTFYMeYeVu7GlbrrfzT_wW__wNsmGMoEEeGbgGai14Z-AvjPkiM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829093203</pqid></control><display><type>article</type><title>Scalable neural quantum states architecture for quantum chemistry</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhao, Tianchen ; Stokes, James ; Veerapaneni, Shravan</creator><creatorcontrib>Zhao, Tianchen ; Stokes, James ; Veerapaneni, Shravan</creatorcontrib><description>Variational optimization of neural-network representations of quantum states has been successfully applied to solve interacting fermionic problems. Despite rapid developments, significant scalability challenges arise when considering molecules of large scale, which correspond to non-locally interacting quantum spin Hamiltonians consisting of sums of thousands or even millions of Pauli operators. In this work, we introduce scalable parallelization strategies to improve neural-network-based variational quantum Monte Carlo calculations for ab-initio quantum chemistry applications. We establish GPU-supported local energy parallelism to compute the optimization objective for Hamiltonians of potentially complex molecules. Using autoregressive sampling techniques, we demonstrate systematic improvement in wall-clock timings required to achieve coupled cluster with up to double excitations baseline target energies. The performance is further enhanced by accommodating the structure of resultant spin Hamiltonians into the autoregressive sampling ordering. The algorithm achieves promising performance in comparison with the classical approximate methods and exhibits both running time and scalability advantages over existing neural-network based methods.</description><identifier>ISSN: 2632-2153</identifier><identifier>EISSN: 2632-2153</identifier><identifier>DOI: 10.1088/2632-2153/acdb2f</identifier><identifier>CODEN: MLSTCK</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; high-performance computing ; Neural networks ; neural quantum states ; Optimization ; Quantum chemistry ; Sampling methods ; variational Monte Carlo</subject><ispartof>Machine learning: science and technology, 2023-06, Vol.4 (2), p.25034</ispartof><rights>2023 The Author(s). Published by IOP Publishing Ltd</rights><rights>2023 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-fa6b7c237e7088ed80dddc68ebec2cfe7666d0aa81a3fa6eb622d04060764d3b3</citedby><cites>FETCH-LOGICAL-c448t-fa6b7c237e7088ed80dddc68ebec2cfe7666d0aa81a3fa6eb622d04060764d3b3</cites><orcidid>0000-0002-2294-7233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2632-2153/acdb2f/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2096,27901,27902,38867,53842</link.rule.ids></links><search><creatorcontrib>Zhao, Tianchen</creatorcontrib><creatorcontrib>Stokes, James</creatorcontrib><creatorcontrib>Veerapaneni, Shravan</creatorcontrib><title>Scalable neural quantum states architecture for quantum chemistry</title><title>Machine learning: science and technology</title><addtitle>MLST</addtitle><addtitle>Mach. Learn.: Sci. Technol</addtitle><description>Variational optimization of neural-network representations of quantum states has been successfully applied to solve interacting fermionic problems. Despite rapid developments, significant scalability challenges arise when considering molecules of large scale, which correspond to non-locally interacting quantum spin Hamiltonians consisting of sums of thousands or even millions of Pauli operators. In this work, we introduce scalable parallelization strategies to improve neural-network-based variational quantum Monte Carlo calculations for ab-initio quantum chemistry applications. We establish GPU-supported local energy parallelism to compute the optimization objective for Hamiltonians of potentially complex molecules. Using autoregressive sampling techniques, we demonstrate systematic improvement in wall-clock timings required to achieve coupled cluster with up to double excitations baseline target energies. The performance is further enhanced by accommodating the structure of resultant spin Hamiltonians into the autoregressive sampling ordering. The algorithm achieves promising performance in comparison with the classical approximate methods and exhibits both running time and scalability advantages over existing neural-network based methods.</description><subject>Algorithms</subject><subject>high-performance computing</subject><subject>Neural networks</subject><subject>neural quantum states</subject><subject>Optimization</subject><subject>Quantum chemistry</subject><subject>Sampling methods</subject><subject>variational Monte Carlo</subject><issn>2632-2153</issn><issn>2632-2153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp9kb1PwzAQxSMEElXpzhiJgYXQi504zlhVfFSqxADMlmOfaaqkSW1n6H-PS1BhQEx3Ov_u3dNzFF2ncJ8C53PCKElImtO5VLoi5iyanEbnv_rLaObcFgBIntKcwCRavCrZyKrBeIeDlU28H-TOD23svPToYmnVpvao_GAxNp09vasNtrXz9nAVXRjZOJx912n0_vjwtnxO1i9Pq-Vinags4z4xklWFIrTAIjhGzUFrrRjHChVRBgvGmAYpeSppYLFihGjIgEHBMk0rOo1Wo67u5Fb0tm6lPYhO1uJr0NkPIa2vVYMi5ySDklEKlc6MxrIMqgRTo3hpTAFB62bU6m23H9B5se0Guwv2BeGkhJISoIGCkVK2c86iOV1NQRxzF8dgxTFYMeYeVu7GlbrrfzT_wW__wNsmGMoEEeGbgGai14Z-AvjPkiM</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Zhao, Tianchen</creator><creator>Stokes, James</creator><creator>Veerapaneni, Shravan</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2P</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2294-7233</orcidid></search><sort><creationdate>20230601</creationdate><title>Scalable neural quantum states architecture for quantum chemistry</title><author>Zhao, Tianchen ; Stokes, James ; Veerapaneni, Shravan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-fa6b7c237e7088ed80dddc68ebec2cfe7666d0aa81a3fa6eb622d04060764d3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>high-performance computing</topic><topic>Neural networks</topic><topic>neural quantum states</topic><topic>Optimization</topic><topic>Quantum chemistry</topic><topic>Sampling methods</topic><topic>variational Monte Carlo</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Tianchen</creatorcontrib><creatorcontrib>Stokes, James</creatorcontrib><creatorcontrib>Veerapaneni, Shravan</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Machine learning: science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Tianchen</au><au>Stokes, James</au><au>Veerapaneni, Shravan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable neural quantum states architecture for quantum chemistry</atitle><jtitle>Machine learning: science and technology</jtitle><stitle>MLST</stitle><addtitle>Mach. Learn.: Sci. Technol</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>4</volume><issue>2</issue><spage>25034</spage><pages>25034-</pages><issn>2632-2153</issn><eissn>2632-2153</eissn><coden>MLSTCK</coden><abstract>Variational optimization of neural-network representations of quantum states has been successfully applied to solve interacting fermionic problems. Despite rapid developments, significant scalability challenges arise when considering molecules of large scale, which correspond to non-locally interacting quantum spin Hamiltonians consisting of sums of thousands or even millions of Pauli operators. In this work, we introduce scalable parallelization strategies to improve neural-network-based variational quantum Monte Carlo calculations for ab-initio quantum chemistry applications. We establish GPU-supported local energy parallelism to compute the optimization objective for Hamiltonians of potentially complex molecules. Using autoregressive sampling techniques, we demonstrate systematic improvement in wall-clock timings required to achieve coupled cluster with up to double excitations baseline target energies. The performance is further enhanced by accommodating the structure of resultant spin Hamiltonians into the autoregressive sampling ordering. The algorithm achieves promising performance in comparison with the classical approximate methods and exhibits both running time and scalability advantages over existing neural-network based methods.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2632-2153/acdb2f</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2294-7233</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2632-2153
ispartof Machine learning: science and technology, 2023-06, Vol.4 (2), p.25034
issn 2632-2153
2632-2153
language eng
recordid cdi_crossref_primary_10_1088_2632_2153_acdb2f
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
high-performance computing
Neural networks
neural quantum states
Optimization
Quantum chemistry
Sampling methods
variational Monte Carlo
title Scalable neural quantum states architecture for quantum chemistry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A56%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20neural%20quantum%20states%20architecture%20for%20quantum%20chemistry&rft.jtitle=Machine%20learning:%20science%20and%20technology&rft.au=Zhao,%20Tianchen&rft.date=2023-06-01&rft.volume=4&rft.issue=2&rft.spage=25034&rft.pages=25034-&rft.issn=2632-2153&rft.eissn=2632-2153&rft.coden=MLSTCK&rft_id=info:doi/10.1088/2632-2153/acdb2f&rft_dat=%3Cproquest_cross%3E2829093203%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2829093203&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_5824096330bd4fde9981a2e1fc89ff70&rfr_iscdi=true