Scalable neural quantum states architecture for quantum chemistry
Variational optimization of neural-network representations of quantum states has been successfully applied to solve interacting fermionic problems. Despite rapid developments, significant scalability challenges arise when considering molecules of large scale, which correspond to non-locally interact...
Gespeichert in:
Veröffentlicht in: | Machine learning: science and technology 2023-06, Vol.4 (2), p.25034 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 25034 |
container_title | Machine learning: science and technology |
container_volume | 4 |
creator | Zhao, Tianchen Stokes, James Veerapaneni, Shravan |
description | Variational optimization of neural-network representations of quantum states has been successfully applied to solve interacting fermionic problems. Despite rapid developments, significant scalability challenges arise when considering molecules of large scale, which correspond to non-locally interacting quantum spin Hamiltonians consisting of sums of thousands or even millions of Pauli operators. In this work, we introduce scalable parallelization strategies to improve neural-network-based variational quantum Monte Carlo calculations for
ab-initio
quantum chemistry applications. We establish GPU-supported local energy parallelism to compute the optimization objective for Hamiltonians of potentially complex molecules. Using autoregressive sampling techniques, we demonstrate systematic improvement in wall-clock timings required to achieve coupled cluster with up to double excitations baseline target energies. The performance is further enhanced by accommodating the structure of resultant spin Hamiltonians into the autoregressive sampling ordering. The algorithm achieves promising performance in comparison with the classical approximate methods and exhibits both running time and scalability advantages over existing neural-network based methods. |
doi_str_mv | 10.1088/2632-2153/acdb2f |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2632_2153_acdb2f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5824096330bd4fde9981a2e1fc89ff70</doaj_id><sourcerecordid>2829093203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-fa6b7c237e7088ed80dddc68ebec2cfe7666d0aa81a3fa6eb622d04060764d3b3</originalsourceid><addsrcrecordid>eNp9kb1PwzAQxSMEElXpzhiJgYXQi504zlhVfFSqxADMlmOfaaqkSW1n6H-PS1BhQEx3Ov_u3dNzFF2ncJ8C53PCKElImtO5VLoi5iyanEbnv_rLaObcFgBIntKcwCRavCrZyKrBeIeDlU28H-TOD23svPToYmnVpvao_GAxNp09vasNtrXz9nAVXRjZOJx912n0_vjwtnxO1i9Pq-Vinags4z4xklWFIrTAIjhGzUFrrRjHChVRBgvGmAYpeSppYLFihGjIgEHBMk0rOo1Wo67u5Fb0tm6lPYhO1uJr0NkPIa2vVYMi5ySDklEKlc6MxrIMqgRTo3hpTAFB62bU6m23H9B5se0Guwv2BeGkhJISoIGCkVK2c86iOV1NQRxzF8dgxTFYMeYeVu7GlbrrfzT_wW__wNsmGMoEEeGbgGai14Z-AvjPkiM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829093203</pqid></control><display><type>article</type><title>Scalable neural quantum states architecture for quantum chemistry</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhao, Tianchen ; Stokes, James ; Veerapaneni, Shravan</creator><creatorcontrib>Zhao, Tianchen ; Stokes, James ; Veerapaneni, Shravan</creatorcontrib><description>Variational optimization of neural-network representations of quantum states has been successfully applied to solve interacting fermionic problems. Despite rapid developments, significant scalability challenges arise when considering molecules of large scale, which correspond to non-locally interacting quantum spin Hamiltonians consisting of sums of thousands or even millions of Pauli operators. In this work, we introduce scalable parallelization strategies to improve neural-network-based variational quantum Monte Carlo calculations for
ab-initio
quantum chemistry applications. We establish GPU-supported local energy parallelism to compute the optimization objective for Hamiltonians of potentially complex molecules. Using autoregressive sampling techniques, we demonstrate systematic improvement in wall-clock timings required to achieve coupled cluster with up to double excitations baseline target energies. The performance is further enhanced by accommodating the structure of resultant spin Hamiltonians into the autoregressive sampling ordering. The algorithm achieves promising performance in comparison with the classical approximate methods and exhibits both running time and scalability advantages over existing neural-network based methods.</description><identifier>ISSN: 2632-2153</identifier><identifier>EISSN: 2632-2153</identifier><identifier>DOI: 10.1088/2632-2153/acdb2f</identifier><identifier>CODEN: MLSTCK</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; high-performance computing ; Neural networks ; neural quantum states ; Optimization ; Quantum chemistry ; Sampling methods ; variational Monte Carlo</subject><ispartof>Machine learning: science and technology, 2023-06, Vol.4 (2), p.25034</ispartof><rights>2023 The Author(s). Published by IOP Publishing Ltd</rights><rights>2023 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-fa6b7c237e7088ed80dddc68ebec2cfe7666d0aa81a3fa6eb622d04060764d3b3</citedby><cites>FETCH-LOGICAL-c448t-fa6b7c237e7088ed80dddc68ebec2cfe7666d0aa81a3fa6eb622d04060764d3b3</cites><orcidid>0000-0002-2294-7233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2632-2153/acdb2f/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2096,27901,27902,38867,53842</link.rule.ids></links><search><creatorcontrib>Zhao, Tianchen</creatorcontrib><creatorcontrib>Stokes, James</creatorcontrib><creatorcontrib>Veerapaneni, Shravan</creatorcontrib><title>Scalable neural quantum states architecture for quantum chemistry</title><title>Machine learning: science and technology</title><addtitle>MLST</addtitle><addtitle>Mach. Learn.: Sci. Technol</addtitle><description>Variational optimization of neural-network representations of quantum states has been successfully applied to solve interacting fermionic problems. Despite rapid developments, significant scalability challenges arise when considering molecules of large scale, which correspond to non-locally interacting quantum spin Hamiltonians consisting of sums of thousands or even millions of Pauli operators. In this work, we introduce scalable parallelization strategies to improve neural-network-based variational quantum Monte Carlo calculations for
ab-initio
quantum chemistry applications. We establish GPU-supported local energy parallelism to compute the optimization objective for Hamiltonians of potentially complex molecules. Using autoregressive sampling techniques, we demonstrate systematic improvement in wall-clock timings required to achieve coupled cluster with up to double excitations baseline target energies. The performance is further enhanced by accommodating the structure of resultant spin Hamiltonians into the autoregressive sampling ordering. The algorithm achieves promising performance in comparison with the classical approximate methods and exhibits both running time and scalability advantages over existing neural-network based methods.</description><subject>Algorithms</subject><subject>high-performance computing</subject><subject>Neural networks</subject><subject>neural quantum states</subject><subject>Optimization</subject><subject>Quantum chemistry</subject><subject>Sampling methods</subject><subject>variational Monte Carlo</subject><issn>2632-2153</issn><issn>2632-2153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp9kb1PwzAQxSMEElXpzhiJgYXQi504zlhVfFSqxADMlmOfaaqkSW1n6H-PS1BhQEx3Ov_u3dNzFF2ncJ8C53PCKElImtO5VLoi5iyanEbnv_rLaObcFgBIntKcwCRavCrZyKrBeIeDlU28H-TOD23svPToYmnVpvao_GAxNp09vasNtrXz9nAVXRjZOJx912n0_vjwtnxO1i9Pq-Vinags4z4xklWFIrTAIjhGzUFrrRjHChVRBgvGmAYpeSppYLFihGjIgEHBMk0rOo1Wo67u5Fb0tm6lPYhO1uJr0NkPIa2vVYMi5ySDklEKlc6MxrIMqgRTo3hpTAFB62bU6m23H9B5se0Guwv2BeGkhJISoIGCkVK2c86iOV1NQRxzF8dgxTFYMeYeVu7GlbrrfzT_wW__wNsmGMoEEeGbgGai14Z-AvjPkiM</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Zhao, Tianchen</creator><creator>Stokes, James</creator><creator>Veerapaneni, Shravan</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2P</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2294-7233</orcidid></search><sort><creationdate>20230601</creationdate><title>Scalable neural quantum states architecture for quantum chemistry</title><author>Zhao, Tianchen ; Stokes, James ; Veerapaneni, Shravan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-fa6b7c237e7088ed80dddc68ebec2cfe7666d0aa81a3fa6eb622d04060764d3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>high-performance computing</topic><topic>Neural networks</topic><topic>neural quantum states</topic><topic>Optimization</topic><topic>Quantum chemistry</topic><topic>Sampling methods</topic><topic>variational Monte Carlo</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Tianchen</creatorcontrib><creatorcontrib>Stokes, James</creatorcontrib><creatorcontrib>Veerapaneni, Shravan</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Machine learning: science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Tianchen</au><au>Stokes, James</au><au>Veerapaneni, Shravan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable neural quantum states architecture for quantum chemistry</atitle><jtitle>Machine learning: science and technology</jtitle><stitle>MLST</stitle><addtitle>Mach. Learn.: Sci. Technol</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>4</volume><issue>2</issue><spage>25034</spage><pages>25034-</pages><issn>2632-2153</issn><eissn>2632-2153</eissn><coden>MLSTCK</coden><abstract>Variational optimization of neural-network representations of quantum states has been successfully applied to solve interacting fermionic problems. Despite rapid developments, significant scalability challenges arise when considering molecules of large scale, which correspond to non-locally interacting quantum spin Hamiltonians consisting of sums of thousands or even millions of Pauli operators. In this work, we introduce scalable parallelization strategies to improve neural-network-based variational quantum Monte Carlo calculations for
ab-initio
quantum chemistry applications. We establish GPU-supported local energy parallelism to compute the optimization objective for Hamiltonians of potentially complex molecules. Using autoregressive sampling techniques, we demonstrate systematic improvement in wall-clock timings required to achieve coupled cluster with up to double excitations baseline target energies. The performance is further enhanced by accommodating the structure of resultant spin Hamiltonians into the autoregressive sampling ordering. The algorithm achieves promising performance in comparison with the classical approximate methods and exhibits both running time and scalability advantages over existing neural-network based methods.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2632-2153/acdb2f</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2294-7233</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2632-2153 |
ispartof | Machine learning: science and technology, 2023-06, Vol.4 (2), p.25034 |
issn | 2632-2153 2632-2153 |
language | eng |
recordid | cdi_crossref_primary_10_1088_2632_2153_acdb2f |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms high-performance computing Neural networks neural quantum states Optimization Quantum chemistry Sampling methods variational Monte Carlo |
title | Scalable neural quantum states architecture for quantum chemistry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A56%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20neural%20quantum%20states%20architecture%20for%20quantum%20chemistry&rft.jtitle=Machine%20learning:%20science%20and%20technology&rft.au=Zhao,%20Tianchen&rft.date=2023-06-01&rft.volume=4&rft.issue=2&rft.spage=25034&rft.pages=25034-&rft.issn=2632-2153&rft.eissn=2632-2153&rft.coden=MLSTCK&rft_id=info:doi/10.1088/2632-2153/acdb2f&rft_dat=%3Cproquest_cross%3E2829093203%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2829093203&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_5824096330bd4fde9981a2e1fc89ff70&rfr_iscdi=true |