Data-centric machine learning in quantum information science

We propose a series of data-centric heuristics for improving the performance of machine learning systems when applied to problems in quantum information science. In particular, we consider how systematic engineering of training sets can significantly enhance the accuracy of pre-trained neural networ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning: science and technology 2022-12, Vol.3 (4), p.4
Hauptverfasser: Lohani, Sanjaya, Lukens, Joseph M, Glasser, Ryan T, Searles, Thomas A, Kirby, Brian T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 4
container_title Machine learning: science and technology
container_volume 3
creator Lohani, Sanjaya
Lukens, Joseph M
Glasser, Ryan T
Searles, Thomas A
Kirby, Brian T
description We propose a series of data-centric heuristics for improving the performance of machine learning systems when applied to problems in quantum information science. In particular, we consider how systematic engineering of training sets can significantly enhance the accuracy of pre-trained neural networks used for quantum state reconstruction without altering the underlying architecture. We find that it is not always optimal to engineer training sets to exactly match the expected distribution of a target scenario, and instead, performance can be further improved by biasing the training set to be slightly more mixed than the target. This is due to the heterogeneity in the number of free variables required to describe states of different purity, and as a result, overall accuracy of the network improves when training sets of a fixed size focus on states with the least constrained free variables. For further clarity, we also include a ‘toy model’ demonstration of how spurious correlations can inadvertently enter synthetic data sets used for training, how the performance of systems trained with these correlations can degrade dramatically, and how the inclusion of even relatively few counterexamples can effectively remedy such problems.
doi_str_mv 10.1088/2632-2153/ac9036
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2632_2153_ac9036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2719491701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-9ffa6278b9e8aafac332d1b405bef237c7afbb7f14bddf66209fb39c7163d0ef3</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EElXpzhjBSsAfSRxLLKh8SpVYYLbOjk1dNXZrOwP_PamCgIXpnk6_9-70EDon-Jrgtr2hDaMlJTW7AS0wa47Q7Gd1_EefokVKG4wxrQmrKZ6h23vIUGrjc3S66EGvnTfF1kD0zn8Uzhf7AXwe-lHaEHvILvgiaWe8NmfoxMI2mcX3nKP3x4e35XO5en16Wd6tSs04z6WwFhrKWyVMC2BBM0Y7oipcK2Mp45qDVYpbUqmus01DsbCKCc1JwzpsLJujiyk3pOzkeDwbvdbBe6OzJG1bt1U1QpcTtIthP5iU5SYM0Y9_ScqJqAThmIwUnigdQ0rRWLmLrof4KQmWhy7loSx5KEtOXY6Wq8niwu4381_8C_IfdA8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2719491701</pqid></control><display><type>article</type><title>Data-centric machine learning in quantum information science</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lohani, Sanjaya ; Lukens, Joseph M ; Glasser, Ryan T ; Searles, Thomas A ; Kirby, Brian T</creator><creatorcontrib>Lohani, Sanjaya ; Lukens, Joseph M ; Glasser, Ryan T ; Searles, Thomas A ; Kirby, Brian T</creatorcontrib><description>We propose a series of data-centric heuristics for improving the performance of machine learning systems when applied to problems in quantum information science. In particular, we consider how systematic engineering of training sets can significantly enhance the accuracy of pre-trained neural networks used for quantum state reconstruction without altering the underlying architecture. We find that it is not always optimal to engineer training sets to exactly match the expected distribution of a target scenario, and instead, performance can be further improved by biasing the training set to be slightly more mixed than the target. This is due to the heterogeneity in the number of free variables required to describe states of different purity, and as a result, overall accuracy of the network improves when training sets of a fixed size focus on states with the least constrained free variables. For further clarity, we also include a ‘toy model’ demonstration of how spurious correlations can inadvertently enter synthetic data sets used for training, how the performance of systems trained with these correlations can degrade dramatically, and how the inclusion of even relatively few counterexamples can effectively remedy such problems.</description><identifier>ISSN: 2632-2153</identifier><identifier>EISSN: 2632-2153</identifier><identifier>DOI: 10.1088/2632-2153/ac9036</identifier><identifier>CODEN: MLSTCK</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Engineering training ; Heterogeneity ; Information science ; Machine learning ; Neural networks ; quantum noise and quantum operations ; Quantum phenomena ; quantum tomography</subject><ispartof>Machine learning: science and technology, 2022-12, Vol.3 (4), p.4</ispartof><rights>2022 The Author(s). Published by IOP Publishing Ltd</rights><rights>2022 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-9ffa6278b9e8aafac332d1b405bef237c7afbb7f14bddf66209fb39c7163d0ef3</citedby><cites>FETCH-LOGICAL-c377t-9ffa6278b9e8aafac332d1b405bef237c7afbb7f14bddf66209fb39c7163d0ef3</cites><orcidid>0000-0003-0699-0669 ; 0000-0002-0532-7884 ; 0000-0002-2698-9887 ; 0000-0001-9650-4462 ; 0000000196504462 ; 0000000306990669</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2632-2153/ac9036/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,776,780,860,881,27903,27904,38869,53846</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1885844$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lohani, Sanjaya</creatorcontrib><creatorcontrib>Lukens, Joseph M</creatorcontrib><creatorcontrib>Glasser, Ryan T</creatorcontrib><creatorcontrib>Searles, Thomas A</creatorcontrib><creatorcontrib>Kirby, Brian T</creatorcontrib><title>Data-centric machine learning in quantum information science</title><title>Machine learning: science and technology</title><addtitle>MLST</addtitle><addtitle>Mach. Learn.: Sci. Technol</addtitle><description>We propose a series of data-centric heuristics for improving the performance of machine learning systems when applied to problems in quantum information science. In particular, we consider how systematic engineering of training sets can significantly enhance the accuracy of pre-trained neural networks used for quantum state reconstruction without altering the underlying architecture. We find that it is not always optimal to engineer training sets to exactly match the expected distribution of a target scenario, and instead, performance can be further improved by biasing the training set to be slightly more mixed than the target. This is due to the heterogeneity in the number of free variables required to describe states of different purity, and as a result, overall accuracy of the network improves when training sets of a fixed size focus on states with the least constrained free variables. For further clarity, we also include a ‘toy model’ demonstration of how spurious correlations can inadvertently enter synthetic data sets used for training, how the performance of systems trained with these correlations can degrade dramatically, and how the inclusion of even relatively few counterexamples can effectively remedy such problems.</description><subject>Engineering training</subject><subject>Heterogeneity</subject><subject>Information science</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>quantum noise and quantum operations</subject><subject>Quantum phenomena</subject><subject>quantum tomography</subject><issn>2632-2153</issn><issn>2632-2153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kL1PwzAQxS0EElXpzhjBSsAfSRxLLKh8SpVYYLbOjk1dNXZrOwP_PamCgIXpnk6_9-70EDon-Jrgtr2hDaMlJTW7AS0wa47Q7Gd1_EefokVKG4wxrQmrKZ6h23vIUGrjc3S66EGvnTfF1kD0zn8Uzhf7AXwe-lHaEHvILvgiaWe8NmfoxMI2mcX3nKP3x4e35XO5en16Wd6tSs04z6WwFhrKWyVMC2BBM0Y7oipcK2Mp45qDVYpbUqmus01DsbCKCc1JwzpsLJujiyk3pOzkeDwbvdbBe6OzJG1bt1U1QpcTtIthP5iU5SYM0Y9_ScqJqAThmIwUnigdQ0rRWLmLrof4KQmWhy7loSx5KEtOXY6Wq8niwu4381_8C_IfdA8</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Lohani, Sanjaya</creator><creator>Lukens, Joseph M</creator><creator>Glasser, Ryan T</creator><creator>Searles, Thomas A</creator><creator>Kirby, Brian T</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2P</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0699-0669</orcidid><orcidid>https://orcid.org/0000-0002-0532-7884</orcidid><orcidid>https://orcid.org/0000-0002-2698-9887</orcidid><orcidid>https://orcid.org/0000-0001-9650-4462</orcidid><orcidid>https://orcid.org/0000000196504462</orcidid><orcidid>https://orcid.org/0000000306990669</orcidid></search><sort><creationdate>20221201</creationdate><title>Data-centric machine learning in quantum information science</title><author>Lohani, Sanjaya ; Lukens, Joseph M ; Glasser, Ryan T ; Searles, Thomas A ; Kirby, Brian T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-9ffa6278b9e8aafac332d1b405bef237c7afbb7f14bddf66209fb39c7163d0ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Engineering training</topic><topic>Heterogeneity</topic><topic>Information science</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>quantum noise and quantum operations</topic><topic>Quantum phenomena</topic><topic>quantum tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lohani, Sanjaya</creatorcontrib><creatorcontrib>Lukens, Joseph M</creatorcontrib><creatorcontrib>Glasser, Ryan T</creatorcontrib><creatorcontrib>Searles, Thomas A</creatorcontrib><creatorcontrib>Kirby, Brian T</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><jtitle>Machine learning: science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lohani, Sanjaya</au><au>Lukens, Joseph M</au><au>Glasser, Ryan T</au><au>Searles, Thomas A</au><au>Kirby, Brian T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-centric machine learning in quantum information science</atitle><jtitle>Machine learning: science and technology</jtitle><stitle>MLST</stitle><addtitle>Mach. Learn.: Sci. Technol</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>3</volume><issue>4</issue><spage>4</spage><pages>4-</pages><issn>2632-2153</issn><eissn>2632-2153</eissn><coden>MLSTCK</coden><abstract>We propose a series of data-centric heuristics for improving the performance of machine learning systems when applied to problems in quantum information science. In particular, we consider how systematic engineering of training sets can significantly enhance the accuracy of pre-trained neural networks used for quantum state reconstruction without altering the underlying architecture. We find that it is not always optimal to engineer training sets to exactly match the expected distribution of a target scenario, and instead, performance can be further improved by biasing the training set to be slightly more mixed than the target. This is due to the heterogeneity in the number of free variables required to describe states of different purity, and as a result, overall accuracy of the network improves when training sets of a fixed size focus on states with the least constrained free variables. For further clarity, we also include a ‘toy model’ demonstration of how spurious correlations can inadvertently enter synthetic data sets used for training, how the performance of systems trained with these correlations can degrade dramatically, and how the inclusion of even relatively few counterexamples can effectively remedy such problems.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2632-2153/ac9036</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-0699-0669</orcidid><orcidid>https://orcid.org/0000-0002-0532-7884</orcidid><orcidid>https://orcid.org/0000-0002-2698-9887</orcidid><orcidid>https://orcid.org/0000-0001-9650-4462</orcidid><orcidid>https://orcid.org/0000000196504462</orcidid><orcidid>https://orcid.org/0000000306990669</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2632-2153
ispartof Machine learning: science and technology, 2022-12, Vol.3 (4), p.4
issn 2632-2153
2632-2153
language eng
recordid cdi_crossref_primary_10_1088_2632_2153_ac9036
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Engineering training
Heterogeneity
Information science
Machine learning
Neural networks
quantum noise and quantum operations
Quantum phenomena
quantum tomography
title Data-centric machine learning in quantum information science
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T20%3A50%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-centric%20machine%20learning%20in%20quantum%20information%20science&rft.jtitle=Machine%20learning:%20science%20and%20technology&rft.au=Lohani,%20Sanjaya&rft.date=2022-12-01&rft.volume=3&rft.issue=4&rft.spage=4&rft.pages=4-&rft.issn=2632-2153&rft.eissn=2632-2153&rft.coden=MLSTCK&rft_id=info:doi/10.1088/2632-2153/ac9036&rft_dat=%3Cproquest_cross%3E2719491701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2719491701&rft_id=info:pmid/&rfr_iscdi=true