Rolling bearing fault feature extraction using Adaptive Resonance-based Sparse Signal Decomposition

The existence of periodic impacts in collected vibration signal is the representative symptom of rolling bearing localized defect. Due to the complicacy of the working condition, the fault-related impacts are usually submerged in other ingredients. This article proposes an adaptive Resonance-based S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering Research Express 2021-03, Vol.3 (1), p.15008
Hauptverfasser: Wang, Kaibo, Jiang, Hongkai, Wu, Zhenghong, Cao, Jiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 15008
container_title Engineering Research Express
container_volume 3
creator Wang, Kaibo
Jiang, Hongkai
Wu, Zhenghong
Cao, Jiping
description The existence of periodic impacts in collected vibration signal is the representative symptom of rolling bearing localized defect. Due to the complicacy of the working condition, the fault-related impacts are usually submerged in other ingredients. This article proposes an adaptive Resonance-based Sparse Signal Decomposition (RSSD) for extracting the fault features of rolling bearings. Adaptive RSSD is constructed to fetch the impacts from collected vibration signal, by making RSSD decomposed signal kurtosis value maximum using Lion Swarm Algorithm (LSA). Multipoint Optimal Minimum Entropy Deconvolution Adjusted (MOMEDA) is further performed to enhance the amplitude and periodicity of impacts contained in RSSD decomposed signal, so that fault feature is highlighted. The superiority and availability of proposed strategy are validated by applying to single fault feature extraction of an experimental dataset and compound faults feature extraction of a locomotive rolling bearing.
doi_str_mv 10.1088/2631-8695/abb28e
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2631_8695_abb28e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>erxabb28e</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268e-f7b949579ef6550d442195b6b4082615b9a31d78d37c5ac68cb63aee2b5ca5cb3</originalsourceid><addsrcrecordid>eNp1kMFLwzAUxoMoOObuHnPyZF3SNml6HFOnMBA2PYeX9HVEuqYkrcz_3pWJeNDT93jv-z4eP0KuObvjTKl5KjOeKFmKORiTKjwjk5_V-a_5ksxidIblUnJZ8GJC7MY3jWt31CCEUWsYmp7WCP0QkOKhD2B751s6xPG8qKDr3QfSDUbfQmsxMRCxotsOQkS6dbsWGnqP1u87H90YvSIXNTQRZ986JW-PD6_Lp2T9snpeLtaJTaXCpC5MmZeiKLGWQrAqz1NeCiNNzlQquTAlZLwqVJUVVoCVyhqZAWJqhAVhTTYl7NRrg48xYK274PYQPjVneuSkRxB6BKFPnI6Rm1PE-U6_-yEcn48aw0FnmmvGBWNKd1V9NN7-Yfy39wvFFnjX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rolling bearing fault feature extraction using Adaptive Resonance-based Sparse Signal Decomposition</title><source>IOP Publishing Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wang, Kaibo ; Jiang, Hongkai ; Wu, Zhenghong ; Cao, Jiping</creator><creatorcontrib>Wang, Kaibo ; Jiang, Hongkai ; Wu, Zhenghong ; Cao, Jiping</creatorcontrib><description>The existence of periodic impacts in collected vibration signal is the representative symptom of rolling bearing localized defect. Due to the complicacy of the working condition, the fault-related impacts are usually submerged in other ingredients. This article proposes an adaptive Resonance-based Sparse Signal Decomposition (RSSD) for extracting the fault features of rolling bearings. Adaptive RSSD is constructed to fetch the impacts from collected vibration signal, by making RSSD decomposed signal kurtosis value maximum using Lion Swarm Algorithm (LSA). Multipoint Optimal Minimum Entropy Deconvolution Adjusted (MOMEDA) is further performed to enhance the amplitude and periodicity of impacts contained in RSSD decomposed signal, so that fault feature is highlighted. The superiority and availability of proposed strategy are validated by applying to single fault feature extraction of an experimental dataset and compound faults feature extraction of a locomotive rolling bearing.</description><identifier>ISSN: 2631-8695</identifier><identifier>EISSN: 2631-8695</identifier><identifier>DOI: 10.1088/2631-8695/abb28e</identifier><identifier>CODEN: ERENBL</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>adaptive resonance-based sparse signal decomposition ; fault feature extraction ; Lion swarm algorithm ; Multipoint optimal minimum entropy deconvolution adjusted ; rolling bearing</subject><ispartof>Engineering Research Express, 2021-03, Vol.3 (1), p.15008</ispartof><rights>2021 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268e-f7b949579ef6550d442195b6b4082615b9a31d78d37c5ac68cb63aee2b5ca5cb3</citedby><cites>FETCH-LOGICAL-c268e-f7b949579ef6550d442195b6b4082615b9a31d78d37c5ac68cb63aee2b5ca5cb3</cites><orcidid>0000-0001-6180-4641</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2631-8695/abb28e/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846</link.rule.ids></links><search><creatorcontrib>Wang, Kaibo</creatorcontrib><creatorcontrib>Jiang, Hongkai</creatorcontrib><creatorcontrib>Wu, Zhenghong</creatorcontrib><creatorcontrib>Cao, Jiping</creatorcontrib><title>Rolling bearing fault feature extraction using Adaptive Resonance-based Sparse Signal Decomposition</title><title>Engineering Research Express</title><addtitle>ERX</addtitle><addtitle>Eng. Res. Express</addtitle><description>The existence of periodic impacts in collected vibration signal is the representative symptom of rolling bearing localized defect. Due to the complicacy of the working condition, the fault-related impacts are usually submerged in other ingredients. This article proposes an adaptive Resonance-based Sparse Signal Decomposition (RSSD) for extracting the fault features of rolling bearings. Adaptive RSSD is constructed to fetch the impacts from collected vibration signal, by making RSSD decomposed signal kurtosis value maximum using Lion Swarm Algorithm (LSA). Multipoint Optimal Minimum Entropy Deconvolution Adjusted (MOMEDA) is further performed to enhance the amplitude and periodicity of impacts contained in RSSD decomposed signal, so that fault feature is highlighted. The superiority and availability of proposed strategy are validated by applying to single fault feature extraction of an experimental dataset and compound faults feature extraction of a locomotive rolling bearing.</description><subject>adaptive resonance-based sparse signal decomposition</subject><subject>fault feature extraction</subject><subject>Lion swarm algorithm</subject><subject>Multipoint optimal minimum entropy deconvolution adjusted</subject><subject>rolling bearing</subject><issn>2631-8695</issn><issn>2631-8695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUxoMoOObuHnPyZF3SNml6HFOnMBA2PYeX9HVEuqYkrcz_3pWJeNDT93jv-z4eP0KuObvjTKl5KjOeKFmKORiTKjwjk5_V-a_5ksxidIblUnJZ8GJC7MY3jWt31CCEUWsYmp7WCP0QkOKhD2B751s6xPG8qKDr3QfSDUbfQmsxMRCxotsOQkS6dbsWGnqP1u87H90YvSIXNTQRZ986JW-PD6_Lp2T9snpeLtaJTaXCpC5MmZeiKLGWQrAqz1NeCiNNzlQquTAlZLwqVJUVVoCVyhqZAWJqhAVhTTYl7NRrg48xYK274PYQPjVneuSkRxB6BKFPnI6Rm1PE-U6_-yEcn48aw0FnmmvGBWNKd1V9NN7-Yfy39wvFFnjX</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Wang, Kaibo</creator><creator>Jiang, Hongkai</creator><creator>Wu, Zhenghong</creator><creator>Cao, Jiping</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6180-4641</orcidid></search><sort><creationdate>20210301</creationdate><title>Rolling bearing fault feature extraction using Adaptive Resonance-based Sparse Signal Decomposition</title><author>Wang, Kaibo ; Jiang, Hongkai ; Wu, Zhenghong ; Cao, Jiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268e-f7b949579ef6550d442195b6b4082615b9a31d78d37c5ac68cb63aee2b5ca5cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>adaptive resonance-based sparse signal decomposition</topic><topic>fault feature extraction</topic><topic>Lion swarm algorithm</topic><topic>Multipoint optimal minimum entropy deconvolution adjusted</topic><topic>rolling bearing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kaibo</creatorcontrib><creatorcontrib>Jiang, Hongkai</creatorcontrib><creatorcontrib>Wu, Zhenghong</creatorcontrib><creatorcontrib>Cao, Jiping</creatorcontrib><collection>CrossRef</collection><jtitle>Engineering Research Express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kaibo</au><au>Jiang, Hongkai</au><au>Wu, Zhenghong</au><au>Cao, Jiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rolling bearing fault feature extraction using Adaptive Resonance-based Sparse Signal Decomposition</atitle><jtitle>Engineering Research Express</jtitle><stitle>ERX</stitle><addtitle>Eng. Res. Express</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>3</volume><issue>1</issue><spage>15008</spage><pages>15008-</pages><issn>2631-8695</issn><eissn>2631-8695</eissn><coden>ERENBL</coden><abstract>The existence of periodic impacts in collected vibration signal is the representative symptom of rolling bearing localized defect. Due to the complicacy of the working condition, the fault-related impacts are usually submerged in other ingredients. This article proposes an adaptive Resonance-based Sparse Signal Decomposition (RSSD) for extracting the fault features of rolling bearings. Adaptive RSSD is constructed to fetch the impacts from collected vibration signal, by making RSSD decomposed signal kurtosis value maximum using Lion Swarm Algorithm (LSA). Multipoint Optimal Minimum Entropy Deconvolution Adjusted (MOMEDA) is further performed to enhance the amplitude and periodicity of impacts contained in RSSD decomposed signal, so that fault feature is highlighted. The superiority and availability of proposed strategy are validated by applying to single fault feature extraction of an experimental dataset and compound faults feature extraction of a locomotive rolling bearing.</abstract><pub>IOP Publishing</pub><doi>10.1088/2631-8695/abb28e</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-6180-4641</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2631-8695
ispartof Engineering Research Express, 2021-03, Vol.3 (1), p.15008
issn 2631-8695
2631-8695
language eng
recordid cdi_crossref_primary_10_1088_2631_8695_abb28e
source IOP Publishing Journals; EZB-FREE-00999 freely available EZB journals
subjects adaptive resonance-based sparse signal decomposition
fault feature extraction
Lion swarm algorithm
Multipoint optimal minimum entropy deconvolution adjusted
rolling bearing
title Rolling bearing fault feature extraction using Adaptive Resonance-based Sparse Signal Decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A42%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rolling%20bearing%20fault%20feature%20extraction%20using%20Adaptive%20Resonance-based%20Sparse%20Signal%20Decomposition&rft.jtitle=Engineering%20Research%20Express&rft.au=Wang,%20Kaibo&rft.date=2021-03-01&rft.volume=3&rft.issue=1&rft.spage=15008&rft.pages=15008-&rft.issn=2631-8695&rft.eissn=2631-8695&rft.coden=ERENBL&rft_id=info:doi/10.1088/2631-8695/abb28e&rft_dat=%3Ciop_cross%3Eerxabb28e%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true