Rolling bearing fault feature extraction using Adaptive Resonance-based Sparse Signal Decomposition
The existence of periodic impacts in collected vibration signal is the representative symptom of rolling bearing localized defect. Due to the complicacy of the working condition, the fault-related impacts are usually submerged in other ingredients. This article proposes an adaptive Resonance-based S...
Gespeichert in:
Veröffentlicht in: | Engineering Research Express 2021-03, Vol.3 (1), p.15008 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 15008 |
container_title | Engineering Research Express |
container_volume | 3 |
creator | Wang, Kaibo Jiang, Hongkai Wu, Zhenghong Cao, Jiping |
description | The existence of periodic impacts in collected vibration signal is the representative symptom of rolling bearing localized defect. Due to the complicacy of the working condition, the fault-related impacts are usually submerged in other ingredients. This article proposes an adaptive Resonance-based Sparse Signal Decomposition (RSSD) for extracting the fault features of rolling bearings. Adaptive RSSD is constructed to fetch the impacts from collected vibration signal, by making RSSD decomposed signal kurtosis value maximum using Lion Swarm Algorithm (LSA). Multipoint Optimal Minimum Entropy Deconvolution Adjusted (MOMEDA) is further performed to enhance the amplitude and periodicity of impacts contained in RSSD decomposed signal, so that fault feature is highlighted. The superiority and availability of proposed strategy are validated by applying to single fault feature extraction of an experimental dataset and compound faults feature extraction of a locomotive rolling bearing. |
doi_str_mv | 10.1088/2631-8695/abb28e |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2631_8695_abb28e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>erxabb28e</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268e-f7b949579ef6550d442195b6b4082615b9a31d78d37c5ac68cb63aee2b5ca5cb3</originalsourceid><addsrcrecordid>eNp1kMFLwzAUxoMoOObuHnPyZF3SNml6HFOnMBA2PYeX9HVEuqYkrcz_3pWJeNDT93jv-z4eP0KuObvjTKl5KjOeKFmKORiTKjwjk5_V-a_5ksxidIblUnJZ8GJC7MY3jWt31CCEUWsYmp7WCP0QkOKhD2B751s6xPG8qKDr3QfSDUbfQmsxMRCxotsOQkS6dbsWGnqP1u87H90YvSIXNTQRZ986JW-PD6_Lp2T9snpeLtaJTaXCpC5MmZeiKLGWQrAqz1NeCiNNzlQquTAlZLwqVJUVVoCVyhqZAWJqhAVhTTYl7NRrg48xYK274PYQPjVneuSkRxB6BKFPnI6Rm1PE-U6_-yEcn48aw0FnmmvGBWNKd1V9NN7-Yfy39wvFFnjX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rolling bearing fault feature extraction using Adaptive Resonance-based Sparse Signal Decomposition</title><source>IOP Publishing Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wang, Kaibo ; Jiang, Hongkai ; Wu, Zhenghong ; Cao, Jiping</creator><creatorcontrib>Wang, Kaibo ; Jiang, Hongkai ; Wu, Zhenghong ; Cao, Jiping</creatorcontrib><description>The existence of periodic impacts in collected vibration signal is the representative symptom of rolling bearing localized defect. Due to the complicacy of the working condition, the fault-related impacts are usually submerged in other ingredients. This article proposes an adaptive Resonance-based Sparse Signal Decomposition (RSSD) for extracting the fault features of rolling bearings. Adaptive RSSD is constructed to fetch the impacts from collected vibration signal, by making RSSD decomposed signal kurtosis value maximum using Lion Swarm Algorithm (LSA). Multipoint Optimal Minimum Entropy Deconvolution Adjusted (MOMEDA) is further performed to enhance the amplitude and periodicity of impacts contained in RSSD decomposed signal, so that fault feature is highlighted. The superiority and availability of proposed strategy are validated by applying to single fault feature extraction of an experimental dataset and compound faults feature extraction of a locomotive rolling bearing.</description><identifier>ISSN: 2631-8695</identifier><identifier>EISSN: 2631-8695</identifier><identifier>DOI: 10.1088/2631-8695/abb28e</identifier><identifier>CODEN: ERENBL</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>adaptive resonance-based sparse signal decomposition ; fault feature extraction ; Lion swarm algorithm ; Multipoint optimal minimum entropy deconvolution adjusted ; rolling bearing</subject><ispartof>Engineering Research Express, 2021-03, Vol.3 (1), p.15008</ispartof><rights>2021 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268e-f7b949579ef6550d442195b6b4082615b9a31d78d37c5ac68cb63aee2b5ca5cb3</citedby><cites>FETCH-LOGICAL-c268e-f7b949579ef6550d442195b6b4082615b9a31d78d37c5ac68cb63aee2b5ca5cb3</cites><orcidid>0000-0001-6180-4641</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2631-8695/abb28e/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846</link.rule.ids></links><search><creatorcontrib>Wang, Kaibo</creatorcontrib><creatorcontrib>Jiang, Hongkai</creatorcontrib><creatorcontrib>Wu, Zhenghong</creatorcontrib><creatorcontrib>Cao, Jiping</creatorcontrib><title>Rolling bearing fault feature extraction using Adaptive Resonance-based Sparse Signal Decomposition</title><title>Engineering Research Express</title><addtitle>ERX</addtitle><addtitle>Eng. Res. Express</addtitle><description>The existence of periodic impacts in collected vibration signal is the representative symptom of rolling bearing localized defect. Due to the complicacy of the working condition, the fault-related impacts are usually submerged in other ingredients. This article proposes an adaptive Resonance-based Sparse Signal Decomposition (RSSD) for extracting the fault features of rolling bearings. Adaptive RSSD is constructed to fetch the impacts from collected vibration signal, by making RSSD decomposed signal kurtosis value maximum using Lion Swarm Algorithm (LSA). Multipoint Optimal Minimum Entropy Deconvolution Adjusted (MOMEDA) is further performed to enhance the amplitude and periodicity of impacts contained in RSSD decomposed signal, so that fault feature is highlighted. The superiority and availability of proposed strategy are validated by applying to single fault feature extraction of an experimental dataset and compound faults feature extraction of a locomotive rolling bearing.</description><subject>adaptive resonance-based sparse signal decomposition</subject><subject>fault feature extraction</subject><subject>Lion swarm algorithm</subject><subject>Multipoint optimal minimum entropy deconvolution adjusted</subject><subject>rolling bearing</subject><issn>2631-8695</issn><issn>2631-8695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUxoMoOObuHnPyZF3SNml6HFOnMBA2PYeX9HVEuqYkrcz_3pWJeNDT93jv-z4eP0KuObvjTKl5KjOeKFmKORiTKjwjk5_V-a_5ksxidIblUnJZ8GJC7MY3jWt31CCEUWsYmp7WCP0QkOKhD2B751s6xPG8qKDr3QfSDUbfQmsxMRCxotsOQkS6dbsWGnqP1u87H90YvSIXNTQRZ986JW-PD6_Lp2T9snpeLtaJTaXCpC5MmZeiKLGWQrAqz1NeCiNNzlQquTAlZLwqVJUVVoCVyhqZAWJqhAVhTTYl7NRrg48xYK274PYQPjVneuSkRxB6BKFPnI6Rm1PE-U6_-yEcn48aw0FnmmvGBWNKd1V9NN7-Yfy39wvFFnjX</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Wang, Kaibo</creator><creator>Jiang, Hongkai</creator><creator>Wu, Zhenghong</creator><creator>Cao, Jiping</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6180-4641</orcidid></search><sort><creationdate>20210301</creationdate><title>Rolling bearing fault feature extraction using Adaptive Resonance-based Sparse Signal Decomposition</title><author>Wang, Kaibo ; Jiang, Hongkai ; Wu, Zhenghong ; Cao, Jiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268e-f7b949579ef6550d442195b6b4082615b9a31d78d37c5ac68cb63aee2b5ca5cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>adaptive resonance-based sparse signal decomposition</topic><topic>fault feature extraction</topic><topic>Lion swarm algorithm</topic><topic>Multipoint optimal minimum entropy deconvolution adjusted</topic><topic>rolling bearing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kaibo</creatorcontrib><creatorcontrib>Jiang, Hongkai</creatorcontrib><creatorcontrib>Wu, Zhenghong</creatorcontrib><creatorcontrib>Cao, Jiping</creatorcontrib><collection>CrossRef</collection><jtitle>Engineering Research Express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kaibo</au><au>Jiang, Hongkai</au><au>Wu, Zhenghong</au><au>Cao, Jiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rolling bearing fault feature extraction using Adaptive Resonance-based Sparse Signal Decomposition</atitle><jtitle>Engineering Research Express</jtitle><stitle>ERX</stitle><addtitle>Eng. Res. Express</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>3</volume><issue>1</issue><spage>15008</spage><pages>15008-</pages><issn>2631-8695</issn><eissn>2631-8695</eissn><coden>ERENBL</coden><abstract>The existence of periodic impacts in collected vibration signal is the representative symptom of rolling bearing localized defect. Due to the complicacy of the working condition, the fault-related impacts are usually submerged in other ingredients. This article proposes an adaptive Resonance-based Sparse Signal Decomposition (RSSD) for extracting the fault features of rolling bearings. Adaptive RSSD is constructed to fetch the impacts from collected vibration signal, by making RSSD decomposed signal kurtosis value maximum using Lion Swarm Algorithm (LSA). Multipoint Optimal Minimum Entropy Deconvolution Adjusted (MOMEDA) is further performed to enhance the amplitude and periodicity of impacts contained in RSSD decomposed signal, so that fault feature is highlighted. The superiority and availability of proposed strategy are validated by applying to single fault feature extraction of an experimental dataset and compound faults feature extraction of a locomotive rolling bearing.</abstract><pub>IOP Publishing</pub><doi>10.1088/2631-8695/abb28e</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-6180-4641</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2631-8695 |
ispartof | Engineering Research Express, 2021-03, Vol.3 (1), p.15008 |
issn | 2631-8695 2631-8695 |
language | eng |
recordid | cdi_crossref_primary_10_1088_2631_8695_abb28e |
source | IOP Publishing Journals; EZB-FREE-00999 freely available EZB journals |
subjects | adaptive resonance-based sparse signal decomposition fault feature extraction Lion swarm algorithm Multipoint optimal minimum entropy deconvolution adjusted rolling bearing |
title | Rolling bearing fault feature extraction using Adaptive Resonance-based Sparse Signal Decomposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A42%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rolling%20bearing%20fault%20feature%20extraction%20using%20Adaptive%20Resonance-based%20Sparse%20Signal%20Decomposition&rft.jtitle=Engineering%20Research%20Express&rft.au=Wang,%20Kaibo&rft.date=2021-03-01&rft.volume=3&rft.issue=1&rft.spage=15008&rft.pages=15008-&rft.issn=2631-8695&rft.eissn=2631-8695&rft.coden=ERENBL&rft_id=info:doi/10.1088/2631-8695/abb28e&rft_dat=%3Ciop_cross%3Eerxabb28e%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |