Vibration-assisted vat photopolymerization for pixelated-aliasing-free surface fabrication

Vibration of the light source enhances both the surface and contour smoothness in vat photopolymerization processes. Low-frequency mask screen vibration ensures a uniform light intensity distribution. Subpixel amplitude vibration mitigates the pixelated, zig-zag contours. Dimensional and geometrical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Extreme Manufacturing 2024-06, Vol.6 (3), p.35004
Hauptverfasser: Xu, Han, Hu, Renzhi, Chen, Shuai, Zhu, Junhong, Zhou, Chi, Chen, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 35004
container_title International Journal of Extreme Manufacturing
container_volume 6
creator Xu, Han
Hu, Renzhi
Chen, Shuai
Zhu, Junhong
Zhou, Chi
Chen, Yong
description Vibration of the light source enhances both the surface and contour smoothness in vat photopolymerization processes. Low-frequency mask screen vibration ensures a uniform light intensity distribution. Subpixel amplitude vibration mitigates the pixelated, zig-zag contours. Dimensional and geometrical errors are maintained within a single pixel’s size. Vibration-assisted mask image projection shows promise for 3D printing in optics. Mask image projection-based vat photopolymerization (MIP-VPP) offers advantages like low cost, high resolution, and a wide material range, making it popular in industry and education. Recently, MIP-VPP employing liquid crystal displays (LCDs) has gained traction, increasingly replacing digital micromirror devices, particularly among hobbyists and in educational settings, and is now beginning to be used in industrial environments. However, LCD-based MIP-VPP suffers from pronounced pixelated aliasing arising from LCD’s discrete image pixels and its direct-contact configuration in MIP-VPP machines, leading to rough surfaces on the 3D-printed parts. Here, we propose a vibration-assisted MIP-VPP method that utilizes a microscale vibration to uniformize the light intensity distribution of the LCD-based mask image on VPP’s building platform. By maintaining the same fabrication speed, our technique generates a smoother, non-pixelated mask image, reducing the roughness on flat surfaces and boundary segments of 3D-printed parts. Through light intensity modeling and simulation, we derived an optimal vibration pattern for LCD mask images, subsequently validated by experiments. We assessed the surface texture, boundary integrity, and dimensional accuracy of components produced using the vibration-assisted approach. The notably smoother surfaces and improved boundary roughness enhance the printing quality of MIP-VPP, enabling its promising applications in sectors like the production of 3D-printed optical devices and others.
doi_str_mv 10.1088/2631-7990/ad2e14
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2631_7990_ad2e14</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_abaa93fa45d54442ae14f81086458a9b</doaj_id><sourcerecordid>2973440467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-765a598e3bb20f23f9fd06af0c225f050bc39e2f7a51485685d764668623f0e53</originalsourceid><addsrcrecordid>eNp1kU1PwzAMhisEEtPYnWMlrpQlaZImRzTxMWkSF-DAJXLaZGTqlpJ0CPj1ZOs0Tpxs2Y9fW6-z7BKjG4yEmBJe4qKSEk2hIQbTk2x0LJ0ecsEpPc8mMTqNGC55xSkeZW-vTgfond8UkFqxN03-CX3evfved779XpvgfvZAbn3IO_dlWkhUAa2D6DbLwgZj8rgNFmqTW9DB1Xv-Ijuz0EYzOcRx9nJ_9zx7LBZPD_PZ7aKoKeZ9UXEGTApTak2QJaWVtkEcLKoJYRYxpOtSGmIrYJgKxgVr0umcC55YZFg5zuaDbuNhpbrg1hC-lQen9gUflgpC7-rWKNAAsrRAWcMopQSSV1YkCzllAqROWleDVhf8x9bEXq38NmzS-YrIqqQUUV4lCg1UHXyMwdjjVozU7iFq57jaua-Gh6SR62HE-e5P81_8F0VbjIA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973440467</pqid></control><display><type>article</type><title>Vibration-assisted vat photopolymerization for pixelated-aliasing-free surface fabrication</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Xu, Han ; Hu, Renzhi ; Chen, Shuai ; Zhu, Junhong ; Zhou, Chi ; Chen, Yong</creator><creatorcontrib>Xu, Han ; Hu, Renzhi ; Chen, Shuai ; Zhu, Junhong ; Zhou, Chi ; Chen, Yong</creatorcontrib><description>Vibration of the light source enhances both the surface and contour smoothness in vat photopolymerization processes. Low-frequency mask screen vibration ensures a uniform light intensity distribution. Subpixel amplitude vibration mitigates the pixelated, zig-zag contours. Dimensional and geometrical errors are maintained within a single pixel’s size. Vibration-assisted mask image projection shows promise for 3D printing in optics. Mask image projection-based vat photopolymerization (MIP-VPP) offers advantages like low cost, high resolution, and a wide material range, making it popular in industry and education. Recently, MIP-VPP employing liquid crystal displays (LCDs) has gained traction, increasingly replacing digital micromirror devices, particularly among hobbyists and in educational settings, and is now beginning to be used in industrial environments. However, LCD-based MIP-VPP suffers from pronounced pixelated aliasing arising from LCD’s discrete image pixels and its direct-contact configuration in MIP-VPP machines, leading to rough surfaces on the 3D-printed parts. Here, we propose a vibration-assisted MIP-VPP method that utilizes a microscale vibration to uniformize the light intensity distribution of the LCD-based mask image on VPP’s building platform. By maintaining the same fabrication speed, our technique generates a smoother, non-pixelated mask image, reducing the roughness on flat surfaces and boundary segments of 3D-printed parts. Through light intensity modeling and simulation, we derived an optimal vibration pattern for LCD mask images, subsequently validated by experiments. We assessed the surface texture, boundary integrity, and dimensional accuracy of components produced using the vibration-assisted approach. The notably smoother surfaces and improved boundary roughness enhance the printing quality of MIP-VPP, enabling its promising applications in sectors like the production of 3D-printed optical devices and others.</description><identifier>ISSN: 2631-8644</identifier><identifier>EISSN: 2631-7990</identifier><identifier>DOI: 10.1088/2631-7990/ad2e14</identifier><identifier>CODEN: IJEMKF</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>additive manufacturing ; Aliasing ; Flat surfaces ; Free surfaces ; LCDs ; Liquid crystal displays ; Luminous intensity ; Photopolymerization ; piezo vibration ; Roughness ; sub-pixel resolution ; Surface layers ; Three dimensional printing ; vat photopolymerization ; Vibration</subject><ispartof>International Journal of Extreme Manufacturing, 2024-06, Vol.6 (3), p.35004</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd on behalf of the IMMT</rights><rights>2024 The Author(s). Published by IOP Publishing Ltd on behalf of the IMMT. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-765a598e3bb20f23f9fd06af0c225f050bc39e2f7a51485685d764668623f0e53</citedby><cites>FETCH-LOGICAL-c416t-765a598e3bb20f23f9fd06af0c225f050bc39e2f7a51485685d764668623f0e53</cites><orcidid>0000-0002-8377-5914 ; 0000-0001-7230-3754</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2631-7990/ad2e14/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>315,781,785,865,2103,27926,27927,38892,53869</link.rule.ids></links><search><creatorcontrib>Xu, Han</creatorcontrib><creatorcontrib>Hu, Renzhi</creatorcontrib><creatorcontrib>Chen, Shuai</creatorcontrib><creatorcontrib>Zhu, Junhong</creatorcontrib><creatorcontrib>Zhou, Chi</creatorcontrib><creatorcontrib>Chen, Yong</creatorcontrib><title>Vibration-assisted vat photopolymerization for pixelated-aliasing-free surface fabrication</title><title>International Journal of Extreme Manufacturing</title><addtitle>IJEM</addtitle><addtitle>Int. J. Extrem. Manuf</addtitle><description>Vibration of the light source enhances both the surface and contour smoothness in vat photopolymerization processes. Low-frequency mask screen vibration ensures a uniform light intensity distribution. Subpixel amplitude vibration mitigates the pixelated, zig-zag contours. Dimensional and geometrical errors are maintained within a single pixel’s size. Vibration-assisted mask image projection shows promise for 3D printing in optics. Mask image projection-based vat photopolymerization (MIP-VPP) offers advantages like low cost, high resolution, and a wide material range, making it popular in industry and education. Recently, MIP-VPP employing liquid crystal displays (LCDs) has gained traction, increasingly replacing digital micromirror devices, particularly among hobbyists and in educational settings, and is now beginning to be used in industrial environments. However, LCD-based MIP-VPP suffers from pronounced pixelated aliasing arising from LCD’s discrete image pixels and its direct-contact configuration in MIP-VPP machines, leading to rough surfaces on the 3D-printed parts. Here, we propose a vibration-assisted MIP-VPP method that utilizes a microscale vibration to uniformize the light intensity distribution of the LCD-based mask image on VPP’s building platform. By maintaining the same fabrication speed, our technique generates a smoother, non-pixelated mask image, reducing the roughness on flat surfaces and boundary segments of 3D-printed parts. Through light intensity modeling and simulation, we derived an optimal vibration pattern for LCD mask images, subsequently validated by experiments. We assessed the surface texture, boundary integrity, and dimensional accuracy of components produced using the vibration-assisted approach. The notably smoother surfaces and improved boundary roughness enhance the printing quality of MIP-VPP, enabling its promising applications in sectors like the production of 3D-printed optical devices and others.</description><subject>additive manufacturing</subject><subject>Aliasing</subject><subject>Flat surfaces</subject><subject>Free surfaces</subject><subject>LCDs</subject><subject>Liquid crystal displays</subject><subject>Luminous intensity</subject><subject>Photopolymerization</subject><subject>piezo vibration</subject><subject>Roughness</subject><subject>sub-pixel resolution</subject><subject>Surface layers</subject><subject>Three dimensional printing</subject><subject>vat photopolymerization</subject><subject>Vibration</subject><issn>2631-8644</issn><issn>2631-7990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNp1kU1PwzAMhisEEtPYnWMlrpQlaZImRzTxMWkSF-DAJXLaZGTqlpJ0CPj1ZOs0Tpxs2Y9fW6-z7BKjG4yEmBJe4qKSEk2hIQbTk2x0LJ0ecsEpPc8mMTqNGC55xSkeZW-vTgfond8UkFqxN03-CX3evfved779XpvgfvZAbn3IO_dlWkhUAa2D6DbLwgZj8rgNFmqTW9DB1Xv-Ijuz0EYzOcRx9nJ_9zx7LBZPD_PZ7aKoKeZ9UXEGTApTak2QJaWVtkEcLKoJYRYxpOtSGmIrYJgKxgVr0umcC55YZFg5zuaDbuNhpbrg1hC-lQen9gUflgpC7-rWKNAAsrRAWcMopQSSV1YkCzllAqROWleDVhf8x9bEXq38NmzS-YrIqqQUUV4lCg1UHXyMwdjjVozU7iFq57jaua-Gh6SR62HE-e5P81_8F0VbjIA</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Xu, Han</creator><creator>Hu, Renzhi</creator><creator>Chen, Shuai</creator><creator>Zhu, Junhong</creator><creator>Zhou, Chi</creator><creator>Chen, Yong</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8377-5914</orcidid><orcidid>https://orcid.org/0000-0001-7230-3754</orcidid></search><sort><creationdate>20240601</creationdate><title>Vibration-assisted vat photopolymerization for pixelated-aliasing-free surface fabrication</title><author>Xu, Han ; Hu, Renzhi ; Chen, Shuai ; Zhu, Junhong ; Zhou, Chi ; Chen, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-765a598e3bb20f23f9fd06af0c225f050bc39e2f7a51485685d764668623f0e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>additive manufacturing</topic><topic>Aliasing</topic><topic>Flat surfaces</topic><topic>Free surfaces</topic><topic>LCDs</topic><topic>Liquid crystal displays</topic><topic>Luminous intensity</topic><topic>Photopolymerization</topic><topic>piezo vibration</topic><topic>Roughness</topic><topic>sub-pixel resolution</topic><topic>Surface layers</topic><topic>Three dimensional printing</topic><topic>vat photopolymerization</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Han</creatorcontrib><creatorcontrib>Hu, Renzhi</creatorcontrib><creatorcontrib>Chen, Shuai</creatorcontrib><creatorcontrib>Zhu, Junhong</creatorcontrib><creatorcontrib>Zhou, Chi</creatorcontrib><creatorcontrib>Chen, Yong</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International Journal of Extreme Manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Han</au><au>Hu, Renzhi</au><au>Chen, Shuai</au><au>Zhu, Junhong</au><au>Zhou, Chi</au><au>Chen, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vibration-assisted vat photopolymerization for pixelated-aliasing-free surface fabrication</atitle><jtitle>International Journal of Extreme Manufacturing</jtitle><stitle>IJEM</stitle><addtitle>Int. J. Extrem. Manuf</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>6</volume><issue>3</issue><spage>35004</spage><pages>35004-</pages><issn>2631-8644</issn><eissn>2631-7990</eissn><coden>IJEMKF</coden><abstract>Vibration of the light source enhances both the surface and contour smoothness in vat photopolymerization processes. Low-frequency mask screen vibration ensures a uniform light intensity distribution. Subpixel amplitude vibration mitigates the pixelated, zig-zag contours. Dimensional and geometrical errors are maintained within a single pixel’s size. Vibration-assisted mask image projection shows promise for 3D printing in optics. Mask image projection-based vat photopolymerization (MIP-VPP) offers advantages like low cost, high resolution, and a wide material range, making it popular in industry and education. Recently, MIP-VPP employing liquid crystal displays (LCDs) has gained traction, increasingly replacing digital micromirror devices, particularly among hobbyists and in educational settings, and is now beginning to be used in industrial environments. However, LCD-based MIP-VPP suffers from pronounced pixelated aliasing arising from LCD’s discrete image pixels and its direct-contact configuration in MIP-VPP machines, leading to rough surfaces on the 3D-printed parts. Here, we propose a vibration-assisted MIP-VPP method that utilizes a microscale vibration to uniformize the light intensity distribution of the LCD-based mask image on VPP’s building platform. By maintaining the same fabrication speed, our technique generates a smoother, non-pixelated mask image, reducing the roughness on flat surfaces and boundary segments of 3D-printed parts. Through light intensity modeling and simulation, we derived an optimal vibration pattern for LCD mask images, subsequently validated by experiments. We assessed the surface texture, boundary integrity, and dimensional accuracy of components produced using the vibration-assisted approach. The notably smoother surfaces and improved boundary roughness enhance the printing quality of MIP-VPP, enabling its promising applications in sectors like the production of 3D-printed optical devices and others.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2631-7990/ad2e14</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8377-5914</orcidid><orcidid>https://orcid.org/0000-0001-7230-3754</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2631-8644
ispartof International Journal of Extreme Manufacturing, 2024-06, Vol.6 (3), p.35004
issn 2631-8644
2631-7990
language eng
recordid cdi_crossref_primary_10_1088_2631_7990_ad2e14
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects additive manufacturing
Aliasing
Flat surfaces
Free surfaces
LCDs
Liquid crystal displays
Luminous intensity
Photopolymerization
piezo vibration
Roughness
sub-pixel resolution
Surface layers
Three dimensional printing
vat photopolymerization
Vibration
title Vibration-assisted vat photopolymerization for pixelated-aliasing-free surface fabrication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A08%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vibration-assisted%20vat%20photopolymerization%20for%20pixelated-aliasing-free%20surface%20fabrication&rft.jtitle=International%20Journal%20of%20Extreme%20Manufacturing&rft.au=Xu,%20Han&rft.date=2024-06-01&rft.volume=6&rft.issue=3&rft.spage=35004&rft.pages=35004-&rft.issn=2631-8644&rft.eissn=2631-7990&rft.coden=IJEMKF&rft_id=info:doi/10.1088/2631-7990/ad2e14&rft_dat=%3Cproquest_cross%3E2973440467%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2973440467&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_abaa93fa45d54442ae14f81086458a9b&rfr_iscdi=true