Review of parameterisation and a novel database (LiionDB) for continuum Li-ion battery models

The Doyle–Fuller–Newman (DFN) framework is the most popular physics-based continuum-level description of the chemical and dynamical internal processes within operating lithium-ion-battery cells. With sufficient flexibility to model a wide range of battery designs and chemistries, the framework provi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in energy 2022-07, Vol.4 (3), p.32004
Hauptverfasser: Wang, A A, O’Kane, S E J, Brosa Planella, F, Houx, J Le, O’Regan, K, Zyskin, M, Edge, J, Monroe, C W, Cooper, S J, Howey, D A, Kendrick, E, Foster, J M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 32004
container_title Progress in energy
container_volume 4
creator Wang, A A
O’Kane, S E J
Brosa Planella, F
Houx, J Le
O’Regan, K
Zyskin, M
Edge, J
Monroe, C W
Cooper, S J
Howey, D A
Kendrick, E
Foster, J M
description The Doyle–Fuller–Newman (DFN) framework is the most popular physics-based continuum-level description of the chemical and dynamical internal processes within operating lithium-ion-battery cells. With sufficient flexibility to model a wide range of battery designs and chemistries, the framework provides an effective balance between detail, needed to capture key microscopic mechanisms, and simplicity, needed to solve the governing equations at a relatively modest computational expense. Nevertheless, implementation requires values of numerous model parameters, whose ranges of applicability, estimation, and validation pose challenges. This article provides a critical review of the methods to measure or infer parameters for use within the isothermal DFN framework, discusses their advantages or disadvantages, and clarifies limitations attached to their practical application. Accompanying this discussion we provide a searchable database, available at www.liiondb.com , which aggregates many parameters and state functions for the standard DFN model that have been reported in the literature.
doi_str_mv 10.1088/2516-1083/ac692c
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2516_1083_ac692c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>prgeac692c</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-d2543589f79d4349a8124a643f91f6d55e3dc4171f70eaf3212f81caca8ea8303</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRsNTuXc5Swdh5JZkstdYHBATRpYTbecCUJBNmkkr_vQkRcePqHu693-FwELqk5JYSKdcspVkyKr4GlRVMnaDF7-r0jz5Hqxj3hBDOGOFULNDnmzk484W9xR0EaExvgovQO99iaDUG3PqDqbGGHnYQDb4q3Xh7uL_G1gesfNu7dhgaXLpkYnbQjw5H3Hht6niBzizU0ax-5hJ9PG7fN89J-fr0srkrE8Wzok80SwVPZWHzQgsuCpCUCcgEtwW1mU5Tw7USNKc2JwYsZ5RZSRUokAYkJ3yJyOyrgo8xGFt1wTUQjhUl1dRQNVUwKV7NDY3IzYw431V7P4R2DPj_-zcz82bz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Review of parameterisation and a novel database (LiionDB) for continuum Li-ion battery models</title><source>IOP Publishing Journals</source><creator>Wang, A A ; O’Kane, S E J ; Brosa Planella, F ; Houx, J Le ; O’Regan, K ; Zyskin, M ; Edge, J ; Monroe, C W ; Cooper, S J ; Howey, D A ; Kendrick, E ; Foster, J M</creator><creatorcontrib>Wang, A A ; O’Kane, S E J ; Brosa Planella, F ; Houx, J Le ; O’Regan, K ; Zyskin, M ; Edge, J ; Monroe, C W ; Cooper, S J ; Howey, D A ; Kendrick, E ; Foster, J M</creatorcontrib><description>The Doyle–Fuller–Newman (DFN) framework is the most popular physics-based continuum-level description of the chemical and dynamical internal processes within operating lithium-ion-battery cells. With sufficient flexibility to model a wide range of battery designs and chemistries, the framework provides an effective balance between detail, needed to capture key microscopic mechanisms, and simplicity, needed to solve the governing equations at a relatively modest computational expense. Nevertheless, implementation requires values of numerous model parameters, whose ranges of applicability, estimation, and validation pose challenges. This article provides a critical review of the methods to measure or infer parameters for use within the isothermal DFN framework, discusses their advantages or disadvantages, and clarifies limitations attached to their practical application. Accompanying this discussion we provide a searchable database, available at www.liiondb.com , which aggregates many parameters and state functions for the standard DFN model that have been reported in the literature.</description><identifier>ISSN: 2516-1083</identifier><identifier>EISSN: 2516-1083</identifier><identifier>DOI: 10.1088/2516-1083/ac692c</identifier><identifier>CODEN: PERNDG</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>experiment ; lithium-ion battery ; modelling ; Newman model ; parameterisation</subject><ispartof>Progress in energy, 2022-07, Vol.4 (3), p.32004</ispartof><rights>2022 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-d2543589f79d4349a8124a643f91f6d55e3dc4171f70eaf3212f81caca8ea8303</citedby><cites>FETCH-LOGICAL-c369t-d2543589f79d4349a8124a643f91f6d55e3dc4171f70eaf3212f81caca8ea8303</cites><orcidid>0000-0003-3141-1657 ; 0000-0002-4219-964X ; 0000-0002-5266-594X ; 0000-0002-0620-3955 ; 0000-0002-9894-5023 ; 0000-0003-4055-6903 ; 0000-0003-1864-5213 ; 0000-0001-6363-2812 ; 0000-0002-1576-0673 ; 0000-0003-4643-2426 ; 0000-0002-6120-5734</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2516-1083/ac692c/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,53821</link.rule.ids></links><search><creatorcontrib>Wang, A A</creatorcontrib><creatorcontrib>O’Kane, S E J</creatorcontrib><creatorcontrib>Brosa Planella, F</creatorcontrib><creatorcontrib>Houx, J Le</creatorcontrib><creatorcontrib>O’Regan, K</creatorcontrib><creatorcontrib>Zyskin, M</creatorcontrib><creatorcontrib>Edge, J</creatorcontrib><creatorcontrib>Monroe, C W</creatorcontrib><creatorcontrib>Cooper, S J</creatorcontrib><creatorcontrib>Howey, D A</creatorcontrib><creatorcontrib>Kendrick, E</creatorcontrib><creatorcontrib>Foster, J M</creatorcontrib><title>Review of parameterisation and a novel database (LiionDB) for continuum Li-ion battery models</title><title>Progress in energy</title><addtitle>PRGE</addtitle><addtitle>Prog. Energy</addtitle><description>The Doyle–Fuller–Newman (DFN) framework is the most popular physics-based continuum-level description of the chemical and dynamical internal processes within operating lithium-ion-battery cells. With sufficient flexibility to model a wide range of battery designs and chemistries, the framework provides an effective balance between detail, needed to capture key microscopic mechanisms, and simplicity, needed to solve the governing equations at a relatively modest computational expense. Nevertheless, implementation requires values of numerous model parameters, whose ranges of applicability, estimation, and validation pose challenges. This article provides a critical review of the methods to measure or infer parameters for use within the isothermal DFN framework, discusses their advantages or disadvantages, and clarifies limitations attached to their practical application. Accompanying this discussion we provide a searchable database, available at www.liiondb.com , which aggregates many parameters and state functions for the standard DFN model that have been reported in the literature.</description><subject>experiment</subject><subject>lithium-ion battery</subject><subject>modelling</subject><subject>Newman model</subject><subject>parameterisation</subject><issn>2516-1083</issn><issn>2516-1083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kEtLw0AUhQdRsNTuXc5Swdh5JZkstdYHBATRpYTbecCUJBNmkkr_vQkRcePqHu693-FwELqk5JYSKdcspVkyKr4GlRVMnaDF7-r0jz5Hqxj3hBDOGOFULNDnmzk484W9xR0EaExvgovQO99iaDUG3PqDqbGGHnYQDb4q3Xh7uL_G1gesfNu7dhgaXLpkYnbQjw5H3Hht6niBzizU0ax-5hJ9PG7fN89J-fr0srkrE8Wzok80SwVPZWHzQgsuCpCUCcgEtwW1mU5Tw7USNKc2JwYsZ5RZSRUokAYkJ3yJyOyrgo8xGFt1wTUQjhUl1dRQNVUwKV7NDY3IzYw431V7P4R2DPj_-zcz82bz</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Wang, A A</creator><creator>O’Kane, S E J</creator><creator>Brosa Planella, F</creator><creator>Houx, J Le</creator><creator>O’Regan, K</creator><creator>Zyskin, M</creator><creator>Edge, J</creator><creator>Monroe, C W</creator><creator>Cooper, S J</creator><creator>Howey, D A</creator><creator>Kendrick, E</creator><creator>Foster, J M</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3141-1657</orcidid><orcidid>https://orcid.org/0000-0002-4219-964X</orcidid><orcidid>https://orcid.org/0000-0002-5266-594X</orcidid><orcidid>https://orcid.org/0000-0002-0620-3955</orcidid><orcidid>https://orcid.org/0000-0002-9894-5023</orcidid><orcidid>https://orcid.org/0000-0003-4055-6903</orcidid><orcidid>https://orcid.org/0000-0003-1864-5213</orcidid><orcidid>https://orcid.org/0000-0001-6363-2812</orcidid><orcidid>https://orcid.org/0000-0002-1576-0673</orcidid><orcidid>https://orcid.org/0000-0003-4643-2426</orcidid><orcidid>https://orcid.org/0000-0002-6120-5734</orcidid></search><sort><creationdate>20220701</creationdate><title>Review of parameterisation and a novel database (LiionDB) for continuum Li-ion battery models</title><author>Wang, A A ; O’Kane, S E J ; Brosa Planella, F ; Houx, J Le ; O’Regan, K ; Zyskin, M ; Edge, J ; Monroe, C W ; Cooper, S J ; Howey, D A ; Kendrick, E ; Foster, J M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-d2543589f79d4349a8124a643f91f6d55e3dc4171f70eaf3212f81caca8ea8303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>experiment</topic><topic>lithium-ion battery</topic><topic>modelling</topic><topic>Newman model</topic><topic>parameterisation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, A A</creatorcontrib><creatorcontrib>O’Kane, S E J</creatorcontrib><creatorcontrib>Brosa Planella, F</creatorcontrib><creatorcontrib>Houx, J Le</creatorcontrib><creatorcontrib>O’Regan, K</creatorcontrib><creatorcontrib>Zyskin, M</creatorcontrib><creatorcontrib>Edge, J</creatorcontrib><creatorcontrib>Monroe, C W</creatorcontrib><creatorcontrib>Cooper, S J</creatorcontrib><creatorcontrib>Howey, D A</creatorcontrib><creatorcontrib>Kendrick, E</creatorcontrib><creatorcontrib>Foster, J M</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Progress in energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, A A</au><au>O’Kane, S E J</au><au>Brosa Planella, F</au><au>Houx, J Le</au><au>O’Regan, K</au><au>Zyskin, M</au><au>Edge, J</au><au>Monroe, C W</au><au>Cooper, S J</au><au>Howey, D A</au><au>Kendrick, E</au><au>Foster, J M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Review of parameterisation and a novel database (LiionDB) for continuum Li-ion battery models</atitle><jtitle>Progress in energy</jtitle><stitle>PRGE</stitle><addtitle>Prog. Energy</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>4</volume><issue>3</issue><spage>32004</spage><pages>32004-</pages><issn>2516-1083</issn><eissn>2516-1083</eissn><coden>PERNDG</coden><abstract>The Doyle–Fuller–Newman (DFN) framework is the most popular physics-based continuum-level description of the chemical and dynamical internal processes within operating lithium-ion-battery cells. With sufficient flexibility to model a wide range of battery designs and chemistries, the framework provides an effective balance between detail, needed to capture key microscopic mechanisms, and simplicity, needed to solve the governing equations at a relatively modest computational expense. Nevertheless, implementation requires values of numerous model parameters, whose ranges of applicability, estimation, and validation pose challenges. This article provides a critical review of the methods to measure or infer parameters for use within the isothermal DFN framework, discusses their advantages or disadvantages, and clarifies limitations attached to their practical application. Accompanying this discussion we provide a searchable database, available at www.liiondb.com , which aggregates many parameters and state functions for the standard DFN model that have been reported in the literature.</abstract><pub>IOP Publishing</pub><doi>10.1088/2516-1083/ac692c</doi><tpages>39</tpages><orcidid>https://orcid.org/0000-0003-3141-1657</orcidid><orcidid>https://orcid.org/0000-0002-4219-964X</orcidid><orcidid>https://orcid.org/0000-0002-5266-594X</orcidid><orcidid>https://orcid.org/0000-0002-0620-3955</orcidid><orcidid>https://orcid.org/0000-0002-9894-5023</orcidid><orcidid>https://orcid.org/0000-0003-4055-6903</orcidid><orcidid>https://orcid.org/0000-0003-1864-5213</orcidid><orcidid>https://orcid.org/0000-0001-6363-2812</orcidid><orcidid>https://orcid.org/0000-0002-1576-0673</orcidid><orcidid>https://orcid.org/0000-0003-4643-2426</orcidid><orcidid>https://orcid.org/0000-0002-6120-5734</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2516-1083
ispartof Progress in energy, 2022-07, Vol.4 (3), p.32004
issn 2516-1083
2516-1083
language eng
recordid cdi_crossref_primary_10_1088_2516_1083_ac692c
source IOP Publishing Journals
subjects experiment
lithium-ion battery
modelling
Newman model
parameterisation
title Review of parameterisation and a novel database (LiionDB) for continuum Li-ion battery models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Review%20of%20parameterisation%20and%20a%20novel%20database%20(LiionDB)%20for%20continuum%20Li-ion%20battery%20models&rft.jtitle=Progress%20in%20energy&rft.au=Wang,%20A%20A&rft.date=2022-07-01&rft.volume=4&rft.issue=3&rft.spage=32004&rft.pages=32004-&rft.issn=2516-1083&rft.eissn=2516-1083&rft.coden=PERNDG&rft_id=info:doi/10.1088/2516-1083/ac692c&rft_dat=%3Ciop_cross%3Eprgeac692c%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true