Sustainable additive manufacturing of polysulfone membranes for liquid separations
Membranes serve as important components for modern manufacturing and purification processes but are conventionally associated with excessive solvent usage. Here, for the first time, a procedure for fabricating large area polysulfone membranes is demonstrated via the combination of direct ink writing...
Gespeichert in:
Veröffentlicht in: | JPhys Energy 2024-01, Vol.6 (1), p.15021 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 15021 |
container_title | JPhys Energy |
container_volume | 6 |
creator | Leonard, Brian Loh, Harrison Lu, David Ogbuoji, Ebuka A Escobar, Isabel C Sierros, Konstantinos Sanyal, Oishi |
description | Membranes serve as important components for modern manufacturing and purification processes but are conventionally associated with excessive solvent usage. Here, for the first time, a procedure for fabricating large area polysulfone membranes is demonstrated via the combination of direct ink writing (DIW) with non-solvent induced phase inversion (NIPS). The superior control and precision of this process allows for complete utilization of the polymer dope solution during membrane fabrication, thus enabling a significant reduction in material usage. Compared to doctor blade fabrication, a 63% reduction in dope solution volume was achieved using the DIW technique for fabricating similarly sized membranes. Cross flow filtration analysis revealed that, independent of the manufacturing method (DIW
vs.
doctor blade), the membranes exhibited near identical separation properties. The separation properties were assessed in terms of bovine serum albumin (BSA) rejection and permeances (pressure normalized flux) of pure water and BSA solution. This new manufacturing strategy allows for the reduction of material and solvent usage while providing a large toolkit of tunable parameters which can aid in advancing membrane technology. |
doi_str_mv | 10.1088/2515-7655/ad1ccc |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2515_7655_ad1ccc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d7a9b158b4484e21a67eaa4a07e85209</doaj_id><sourcerecordid>2917601237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-996d7e6e27ffd6a887cc92103128f66b2d07a612cd152d5692ea52035fd00bd73</originalsourceid><addsrcrecordid>eNp9kctr3EAMxk1poSHJvUdDj-020tjz8LGEPgKBQB_nQZ7RLLN4Pc6MXdj_vt66pD2UniSkT79PSFX1CuEdgjE3QqLcaSXlDXl0zj2rLp5Kz__KX1bXpRwAQBipNMJF9eXrUmaKI_UD1-R9nOMPro80LoHcvOQ47usU6ikNp7IMIY1rk499ppFLHVKuh_i4RF8XnijTHNNYrqoXgYbC17_jZfX944dvt5939w-f7m7f3-9cC3LedZ3ymhULHYJXZIx2rhMIDQoTlOqFB00KhfMohZeqE0xSQCODB-i9bi6ru43rEx3slOOR8skmivZXIeW9pTxHN7D1mroepenb1rQskJRmopZAs1mZ3cp6vbGmnB4XLrM9pCWP6_pWdKgVoGjOjrCpXE6lZA5Prgj2_Ah7vrQ9X9puj1hH3m4jMU1_mP-Rv_mH_DDxyHl_ssqiBZQg0E4-ND8Bh8-Zbg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917601237</pqid></control><display><type>article</type><title>Sustainable additive manufacturing of polysulfone membranes for liquid separations</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Leonard, Brian ; Loh, Harrison ; Lu, David ; Ogbuoji, Ebuka A ; Escobar, Isabel C ; Sierros, Konstantinos ; Sanyal, Oishi</creator><creatorcontrib>Leonard, Brian ; Loh, Harrison ; Lu, David ; Ogbuoji, Ebuka A ; Escobar, Isabel C ; Sierros, Konstantinos ; Sanyal, Oishi</creatorcontrib><description>Membranes serve as important components for modern manufacturing and purification processes but are conventionally associated with excessive solvent usage. Here, for the first time, a procedure for fabricating large area polysulfone membranes is demonstrated via the combination of direct ink writing (DIW) with non-solvent induced phase inversion (NIPS). The superior control and precision of this process allows for complete utilization of the polymer dope solution during membrane fabrication, thus enabling a significant reduction in material usage. Compared to doctor blade fabrication, a 63% reduction in dope solution volume was achieved using the DIW technique for fabricating similarly sized membranes. Cross flow filtration analysis revealed that, independent of the manufacturing method (DIW
vs.
doctor blade), the membranes exhibited near identical separation properties. The separation properties were assessed in terms of bovine serum albumin (BSA) rejection and permeances (pressure normalized flux) of pure water and BSA solution. This new manufacturing strategy allows for the reduction of material and solvent usage while providing a large toolkit of tunable parameters which can aid in advancing membrane technology.</description><identifier>ISSN: 2515-7655</identifier><identifier>EISSN: 2515-7655</identifier><identifier>DOI: 10.1088/2515-7655/ad1ccc</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>additive manufacturing ; Cross flow ; direct ink writing ; liquid separations ; Manufacturing ; membrane separations ; Membranes ; polysulfone membrane ; Polysulfone resins ; Production methods ; Reduction ; Separation ; Serum albumin ; Solvents</subject><ispartof>JPhys Energy, 2024-01, Vol.6 (1), p.15021</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><rights>2024 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c405t-996d7e6e27ffd6a887cc92103128f66b2d07a612cd152d5692ea52035fd00bd73</cites><orcidid>0000-0002-7830-0463 ; 0000-0002-8525-9964 ; 0000-0001-5714-7191 ; 0009-0007-4803-7979</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2515-7655/ad1ccc/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2096,27901,27902,38867,53842</link.rule.ids></links><search><creatorcontrib>Leonard, Brian</creatorcontrib><creatorcontrib>Loh, Harrison</creatorcontrib><creatorcontrib>Lu, David</creatorcontrib><creatorcontrib>Ogbuoji, Ebuka A</creatorcontrib><creatorcontrib>Escobar, Isabel C</creatorcontrib><creatorcontrib>Sierros, Konstantinos</creatorcontrib><creatorcontrib>Sanyal, Oishi</creatorcontrib><title>Sustainable additive manufacturing of polysulfone membranes for liquid separations</title><title>JPhys Energy</title><addtitle>JPhysEnergy</addtitle><addtitle>J. Phys. Energy</addtitle><description>Membranes serve as important components for modern manufacturing and purification processes but are conventionally associated with excessive solvent usage. Here, for the first time, a procedure for fabricating large area polysulfone membranes is demonstrated via the combination of direct ink writing (DIW) with non-solvent induced phase inversion (NIPS). The superior control and precision of this process allows for complete utilization of the polymer dope solution during membrane fabrication, thus enabling a significant reduction in material usage. Compared to doctor blade fabrication, a 63% reduction in dope solution volume was achieved using the DIW technique for fabricating similarly sized membranes. Cross flow filtration analysis revealed that, independent of the manufacturing method (DIW
vs.
doctor blade), the membranes exhibited near identical separation properties. The separation properties were assessed in terms of bovine serum albumin (BSA) rejection and permeances (pressure normalized flux) of pure water and BSA solution. This new manufacturing strategy allows for the reduction of material and solvent usage while providing a large toolkit of tunable parameters which can aid in advancing membrane technology.</description><subject>additive manufacturing</subject><subject>Cross flow</subject><subject>direct ink writing</subject><subject>liquid separations</subject><subject>Manufacturing</subject><subject>membrane separations</subject><subject>Membranes</subject><subject>polysulfone membrane</subject><subject>Polysulfone resins</subject><subject>Production methods</subject><subject>Reduction</subject><subject>Separation</subject><subject>Serum albumin</subject><subject>Solvents</subject><issn>2515-7655</issn><issn>2515-7655</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp9kctr3EAMxk1poSHJvUdDj-020tjz8LGEPgKBQB_nQZ7RLLN4Pc6MXdj_vt66pD2UniSkT79PSFX1CuEdgjE3QqLcaSXlDXl0zj2rLp5Kz__KX1bXpRwAQBipNMJF9eXrUmaKI_UD1-R9nOMPro80LoHcvOQ47usU6ikNp7IMIY1rk499ppFLHVKuh_i4RF8XnijTHNNYrqoXgYbC17_jZfX944dvt5939w-f7m7f3-9cC3LedZ3ymhULHYJXZIx2rhMIDQoTlOqFB00KhfMohZeqE0xSQCODB-i9bi6ru43rEx3slOOR8skmivZXIeW9pTxHN7D1mroepenb1rQskJRmopZAs1mZ3cp6vbGmnB4XLrM9pCWP6_pWdKgVoGjOjrCpXE6lZA5Prgj2_Ah7vrQ9X9puj1hH3m4jMU1_mP-Rv_mH_DDxyHl_ssqiBZQg0E4-ND8Bh8-Zbg</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Leonard, Brian</creator><creator>Loh, Harrison</creator><creator>Lu, David</creator><creator>Ogbuoji, Ebuka A</creator><creator>Escobar, Isabel C</creator><creator>Sierros, Konstantinos</creator><creator>Sanyal, Oishi</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7830-0463</orcidid><orcidid>https://orcid.org/0000-0002-8525-9964</orcidid><orcidid>https://orcid.org/0000-0001-5714-7191</orcidid><orcidid>https://orcid.org/0009-0007-4803-7979</orcidid></search><sort><creationdate>20240101</creationdate><title>Sustainable additive manufacturing of polysulfone membranes for liquid separations</title><author>Leonard, Brian ; Loh, Harrison ; Lu, David ; Ogbuoji, Ebuka A ; Escobar, Isabel C ; Sierros, Konstantinos ; Sanyal, Oishi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-996d7e6e27ffd6a887cc92103128f66b2d07a612cd152d5692ea52035fd00bd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>additive manufacturing</topic><topic>Cross flow</topic><topic>direct ink writing</topic><topic>liquid separations</topic><topic>Manufacturing</topic><topic>membrane separations</topic><topic>Membranes</topic><topic>polysulfone membrane</topic><topic>Polysulfone resins</topic><topic>Production methods</topic><topic>Reduction</topic><topic>Separation</topic><topic>Serum albumin</topic><topic>Solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leonard, Brian</creatorcontrib><creatorcontrib>Loh, Harrison</creatorcontrib><creatorcontrib>Lu, David</creatorcontrib><creatorcontrib>Ogbuoji, Ebuka A</creatorcontrib><creatorcontrib>Escobar, Isabel C</creatorcontrib><creatorcontrib>Sierros, Konstantinos</creatorcontrib><creatorcontrib>Sanyal, Oishi</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>JPhys Energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leonard, Brian</au><au>Loh, Harrison</au><au>Lu, David</au><au>Ogbuoji, Ebuka A</au><au>Escobar, Isabel C</au><au>Sierros, Konstantinos</au><au>Sanyal, Oishi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sustainable additive manufacturing of polysulfone membranes for liquid separations</atitle><jtitle>JPhys Energy</jtitle><stitle>JPhysEnergy</stitle><addtitle>J. Phys. Energy</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>6</volume><issue>1</issue><spage>15021</spage><pages>15021-</pages><issn>2515-7655</issn><eissn>2515-7655</eissn><abstract>Membranes serve as important components for modern manufacturing and purification processes but are conventionally associated with excessive solvent usage. Here, for the first time, a procedure for fabricating large area polysulfone membranes is demonstrated via the combination of direct ink writing (DIW) with non-solvent induced phase inversion (NIPS). The superior control and precision of this process allows for complete utilization of the polymer dope solution during membrane fabrication, thus enabling a significant reduction in material usage. Compared to doctor blade fabrication, a 63% reduction in dope solution volume was achieved using the DIW technique for fabricating similarly sized membranes. Cross flow filtration analysis revealed that, independent of the manufacturing method (DIW
vs.
doctor blade), the membranes exhibited near identical separation properties. The separation properties were assessed in terms of bovine serum albumin (BSA) rejection and permeances (pressure normalized flux) of pure water and BSA solution. This new manufacturing strategy allows for the reduction of material and solvent usage while providing a large toolkit of tunable parameters which can aid in advancing membrane technology.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2515-7655/ad1ccc</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7830-0463</orcidid><orcidid>https://orcid.org/0000-0002-8525-9964</orcidid><orcidid>https://orcid.org/0000-0001-5714-7191</orcidid><orcidid>https://orcid.org/0009-0007-4803-7979</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2515-7655 |
ispartof | JPhys Energy, 2024-01, Vol.6 (1), p.15021 |
issn | 2515-7655 2515-7655 |
language | eng |
recordid | cdi_crossref_primary_10_1088_2515_7655_ad1ccc |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | additive manufacturing Cross flow direct ink writing liquid separations Manufacturing membrane separations Membranes polysulfone membrane Polysulfone resins Production methods Reduction Separation Serum albumin Solvents |
title | Sustainable additive manufacturing of polysulfone membranes for liquid separations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A42%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sustainable%20additive%20manufacturing%20of%20polysulfone%20membranes%20for%20liquid%20separations&rft.jtitle=JPhys%20Energy&rft.au=Leonard,%20Brian&rft.date=2024-01-01&rft.volume=6&rft.issue=1&rft.spage=15021&rft.pages=15021-&rft.issn=2515-7655&rft.eissn=2515-7655&rft_id=info:doi/10.1088/2515-7655/ad1ccc&rft_dat=%3Cproquest_cross%3E2917601237%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917601237&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_d7a9b158b4484e21a67eaa4a07e85209&rfr_iscdi=true |