First evidence for cold-adapted anaerobic oxidation of methane in deep sediments of thermokarst lakes

Microbial decomposition of thawed permafrost carbon in thermokarst lakes leads to the release of ancient carbon as the greenhouse gas methane (CH4), yet potential mitigating processes are not understood. Here, we report δ13C-CH4 signatures in the pore water of a thermokarst lake sediment core that p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental Research Communications 2019-04, Vol.1 (2), p.21002
Hauptverfasser: Winkel, M, Sepulveda-Jauregui, A, Martinez-Cruz, K, Heslop, J K, Rijkers, R, Horn, F, Liebner, S, Walter Anthony, K M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 21002
container_title Environmental Research Communications
container_volume 1
creator Winkel, M
Sepulveda-Jauregui, A
Martinez-Cruz, K
Heslop, J K
Rijkers, R
Horn, F
Liebner, S
Walter Anthony, K M
description Microbial decomposition of thawed permafrost carbon in thermokarst lakes leads to the release of ancient carbon as the greenhouse gas methane (CH4), yet potential mitigating processes are not understood. Here, we report δ13C-CH4 signatures in the pore water of a thermokarst lake sediment core that points towards in situ occurrence of anaerobic oxidation of methane (AOM). Analysis of the microbial communities showed a natural enrichment in CH4-oxidizing archaeal communities that occur in sediment horizons at temperatures near 0 °C. These archaea also showed high rates of AOM in laboratory incubations. Calculation of the stable isotopes suggests that 41 to 83% of in situ dissolved CH4 is consumed anaerobically. Quantification of functional genes (mcrA) for anaerobic methanotrophic communities revealed up to 6.7 0.7 × 105 copy numbers g−1 wet weight and showed similar abundances to bacterial 16S rRNA gene sequences in the sediment layers with the highest AOM rates. We conclude that these AOM communities are fueled by CH4 produced from permafrost organic matter degradation in the underlying sediments that represent the radially expanding permafrost thaw front beneath the lake. If these communities are widespread in thermokarst environments, they could have a major mitigating effect on the global CH4 emissions.
doi_str_mv 10.1088/2515-7620/ab1042
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2515_7620_ab1042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548129425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-4bb9e77133c0d1b2c8899da17168137b9a0ff413c477046007849b451c168ebe3</originalsourceid><addsrcrecordid>eNp1kEFLAzEQRhdRsGjvHgOCJ9dmstkme5RiVSh40XPIJrM0bXezJqnov3eXinrQ0wwzb76Bl2UXQG-ASjljJZS5mDM60zVQzo6yyffo-Fd_mk1j3FBKmag4BT7JcOlCTATfnMXOIGl8IMbvbK6t7hNaojuNwdfOEP_urE7Od8Q3pMW01h0S1xGL2JOI1rXYpTgu0xpD67d6TN7pLcbz7KTRu4jTr3qWvSzvnhcP-erp_nFxu8pNISHlvK4rFAKKwlALNTNSVpXVIGAuoRB1pWnTcCgMF4LyOaVC8qrmJZgBwBqLs-zykNsH_7rHmNTG70M3vFSs5BJYxVk5UPRAmeBjDNioPrhWhw8FVI0-1ShMjcLUwedwcnU4cb7_ycRgFCimKINBqeptM4DXf4D_5n4CPuOCIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548129425</pqid></control><display><type>article</type><title>First evidence for cold-adapted anaerobic oxidation of methane in deep sediments of thermokarst lakes</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Institute of Physics Open Access Journal Titles</source><creator>Winkel, M ; Sepulveda-Jauregui, A ; Martinez-Cruz, K ; Heslop, J K ; Rijkers, R ; Horn, F ; Liebner, S ; Walter Anthony, K M</creator><creatorcontrib>Winkel, M ; Sepulveda-Jauregui, A ; Martinez-Cruz, K ; Heslop, J K ; Rijkers, R ; Horn, F ; Liebner, S ; Walter Anthony, K M</creatorcontrib><description>Microbial decomposition of thawed permafrost carbon in thermokarst lakes leads to the release of ancient carbon as the greenhouse gas methane (CH4), yet potential mitigating processes are not understood. Here, we report δ13C-CH4 signatures in the pore water of a thermokarst lake sediment core that points towards in situ occurrence of anaerobic oxidation of methane (AOM). Analysis of the microbial communities showed a natural enrichment in CH4-oxidizing archaeal communities that occur in sediment horizons at temperatures near 0 °C. These archaea also showed high rates of AOM in laboratory incubations. Calculation of the stable isotopes suggests that 41 to 83% of in situ dissolved CH4 is consumed anaerobically. Quantification of functional genes (mcrA) for anaerobic methanotrophic communities revealed up to 6.7 0.7 × 105 copy numbers g−1 wet weight and showed similar abundances to bacterial 16S rRNA gene sequences in the sediment layers with the highest AOM rates. We conclude that these AOM communities are fueled by CH4 produced from permafrost organic matter degradation in the underlying sediments that represent the radially expanding permafrost thaw front beneath the lake. If these communities are widespread in thermokarst environments, they could have a major mitigating effect on the global CH4 emissions.</description><identifier>ISSN: 2515-7620</identifier><identifier>EISSN: 2515-7620</identifier><identifier>DOI: 10.1088/2515-7620/ab1042</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Anaerobic microorganisms ; ANME-2d ; Archaea ; Biodegradation ; C-methane ; Carbon ; Environmental degradation ; Gene sequencing ; Greenhouse effect ; Greenhouse gases ; Isotopes ; Lake sediments ; Lakes ; Methane ; Microbial activity ; Microorganisms ; Organic matter ; Oxidation ; Permafrost ; Pore water ; rRNA 16S ; Sediments ; Stable isotopes ; subsurface</subject><ispartof>Environmental Research Communications, 2019-04, Vol.1 (2), p.21002</ispartof><rights>2019 The Author(s). Published by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-4bb9e77133c0d1b2c8899da17168137b9a0ff413c477046007849b451c168ebe3</citedby><cites>FETCH-LOGICAL-c381t-4bb9e77133c0d1b2c8899da17168137b9a0ff413c477046007849b451c168ebe3</cites><orcidid>0000-0001-9365-0616 ; 0000-0001-7777-4520 ; 0000-0002-9389-7093 ; 0000-0003-2079-2896 ; 0000-0002-8243-4456 ; 0000-0001-7263-8917 ; 0000-0003-3692-0952 ; 0000-0002-4070-3400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2515-7620/ab1042/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,27901,27902,38867,53842</link.rule.ids></links><search><creatorcontrib>Winkel, M</creatorcontrib><creatorcontrib>Sepulveda-Jauregui, A</creatorcontrib><creatorcontrib>Martinez-Cruz, K</creatorcontrib><creatorcontrib>Heslop, J K</creatorcontrib><creatorcontrib>Rijkers, R</creatorcontrib><creatorcontrib>Horn, F</creatorcontrib><creatorcontrib>Liebner, S</creatorcontrib><creatorcontrib>Walter Anthony, K M</creatorcontrib><title>First evidence for cold-adapted anaerobic oxidation of methane in deep sediments of thermokarst lakes</title><title>Environmental Research Communications</title><addtitle>ERC</addtitle><addtitle>Environ. Res. Commun</addtitle><description>Microbial decomposition of thawed permafrost carbon in thermokarst lakes leads to the release of ancient carbon as the greenhouse gas methane (CH4), yet potential mitigating processes are not understood. Here, we report δ13C-CH4 signatures in the pore water of a thermokarst lake sediment core that points towards in situ occurrence of anaerobic oxidation of methane (AOM). Analysis of the microbial communities showed a natural enrichment in CH4-oxidizing archaeal communities that occur in sediment horizons at temperatures near 0 °C. These archaea also showed high rates of AOM in laboratory incubations. Calculation of the stable isotopes suggests that 41 to 83% of in situ dissolved CH4 is consumed anaerobically. Quantification of functional genes (mcrA) for anaerobic methanotrophic communities revealed up to 6.7 0.7 × 105 copy numbers g−1 wet weight and showed similar abundances to bacterial 16S rRNA gene sequences in the sediment layers with the highest AOM rates. We conclude that these AOM communities are fueled by CH4 produced from permafrost organic matter degradation in the underlying sediments that represent the radially expanding permafrost thaw front beneath the lake. If these communities are widespread in thermokarst environments, they could have a major mitigating effect on the global CH4 emissions.</description><subject>Anaerobic microorganisms</subject><subject>ANME-2d</subject><subject>Archaea</subject><subject>Biodegradation</subject><subject>C-methane</subject><subject>Carbon</subject><subject>Environmental degradation</subject><subject>Gene sequencing</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Isotopes</subject><subject>Lake sediments</subject><subject>Lakes</subject><subject>Methane</subject><subject>Microbial activity</subject><subject>Microorganisms</subject><subject>Organic matter</subject><subject>Oxidation</subject><subject>Permafrost</subject><subject>Pore water</subject><subject>rRNA 16S</subject><subject>Sediments</subject><subject>Stable isotopes</subject><subject>subsurface</subject><issn>2515-7620</issn><issn>2515-7620</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kEFLAzEQRhdRsGjvHgOCJ9dmstkme5RiVSh40XPIJrM0bXezJqnov3eXinrQ0wwzb76Bl2UXQG-ASjljJZS5mDM60zVQzo6yyffo-Fd_mk1j3FBKmag4BT7JcOlCTATfnMXOIGl8IMbvbK6t7hNaojuNwdfOEP_urE7Od8Q3pMW01h0S1xGL2JOI1rXYpTgu0xpD67d6TN7pLcbz7KTRu4jTr3qWvSzvnhcP-erp_nFxu8pNISHlvK4rFAKKwlALNTNSVpXVIGAuoRB1pWnTcCgMF4LyOaVC8qrmJZgBwBqLs-zykNsH_7rHmNTG70M3vFSs5BJYxVk5UPRAmeBjDNioPrhWhw8FVI0-1ShMjcLUwedwcnU4cb7_ycRgFCimKINBqeptM4DXf4D_5n4CPuOCIA</recordid><startdate>20190403</startdate><enddate>20190403</enddate><creator>Winkel, M</creator><creator>Sepulveda-Jauregui, A</creator><creator>Martinez-Cruz, K</creator><creator>Heslop, J K</creator><creator>Rijkers, R</creator><creator>Horn, F</creator><creator>Liebner, S</creator><creator>Walter Anthony, K M</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><orcidid>https://orcid.org/0000-0001-9365-0616</orcidid><orcidid>https://orcid.org/0000-0001-7777-4520</orcidid><orcidid>https://orcid.org/0000-0002-9389-7093</orcidid><orcidid>https://orcid.org/0000-0003-2079-2896</orcidid><orcidid>https://orcid.org/0000-0002-8243-4456</orcidid><orcidid>https://orcid.org/0000-0001-7263-8917</orcidid><orcidid>https://orcid.org/0000-0003-3692-0952</orcidid><orcidid>https://orcid.org/0000-0002-4070-3400</orcidid></search><sort><creationdate>20190403</creationdate><title>First evidence for cold-adapted anaerobic oxidation of methane in deep sediments of thermokarst lakes</title><author>Winkel, M ; Sepulveda-Jauregui, A ; Martinez-Cruz, K ; Heslop, J K ; Rijkers, R ; Horn, F ; Liebner, S ; Walter Anthony, K M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-4bb9e77133c0d1b2c8899da17168137b9a0ff413c477046007849b451c168ebe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anaerobic microorganisms</topic><topic>ANME-2d</topic><topic>Archaea</topic><topic>Biodegradation</topic><topic>C-methane</topic><topic>Carbon</topic><topic>Environmental degradation</topic><topic>Gene sequencing</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Isotopes</topic><topic>Lake sediments</topic><topic>Lakes</topic><topic>Methane</topic><topic>Microbial activity</topic><topic>Microorganisms</topic><topic>Organic matter</topic><topic>Oxidation</topic><topic>Permafrost</topic><topic>Pore water</topic><topic>rRNA 16S</topic><topic>Sediments</topic><topic>Stable isotopes</topic><topic>subsurface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Winkel, M</creatorcontrib><creatorcontrib>Sepulveda-Jauregui, A</creatorcontrib><creatorcontrib>Martinez-Cruz, K</creatorcontrib><creatorcontrib>Heslop, J K</creatorcontrib><creatorcontrib>Rijkers, R</creatorcontrib><creatorcontrib>Horn, F</creatorcontrib><creatorcontrib>Liebner, S</creatorcontrib><creatorcontrib>Walter Anthony, K M</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>Environmental Research Communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Winkel, M</au><au>Sepulveda-Jauregui, A</au><au>Martinez-Cruz, K</au><au>Heslop, J K</au><au>Rijkers, R</au><au>Horn, F</au><au>Liebner, S</au><au>Walter Anthony, K M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First evidence for cold-adapted anaerobic oxidation of methane in deep sediments of thermokarst lakes</atitle><jtitle>Environmental Research Communications</jtitle><stitle>ERC</stitle><addtitle>Environ. Res. Commun</addtitle><date>2019-04-03</date><risdate>2019</risdate><volume>1</volume><issue>2</issue><spage>21002</spage><pages>21002-</pages><issn>2515-7620</issn><eissn>2515-7620</eissn><abstract>Microbial decomposition of thawed permafrost carbon in thermokarst lakes leads to the release of ancient carbon as the greenhouse gas methane (CH4), yet potential mitigating processes are not understood. Here, we report δ13C-CH4 signatures in the pore water of a thermokarst lake sediment core that points towards in situ occurrence of anaerobic oxidation of methane (AOM). Analysis of the microbial communities showed a natural enrichment in CH4-oxidizing archaeal communities that occur in sediment horizons at temperatures near 0 °C. These archaea also showed high rates of AOM in laboratory incubations. Calculation of the stable isotopes suggests that 41 to 83% of in situ dissolved CH4 is consumed anaerobically. Quantification of functional genes (mcrA) for anaerobic methanotrophic communities revealed up to 6.7 0.7 × 105 copy numbers g−1 wet weight and showed similar abundances to bacterial 16S rRNA gene sequences in the sediment layers with the highest AOM rates. We conclude that these AOM communities are fueled by CH4 produced from permafrost organic matter degradation in the underlying sediments that represent the radially expanding permafrost thaw front beneath the lake. If these communities are widespread in thermokarst environments, they could have a major mitigating effect on the global CH4 emissions.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2515-7620/ab1042</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9365-0616</orcidid><orcidid>https://orcid.org/0000-0001-7777-4520</orcidid><orcidid>https://orcid.org/0000-0002-9389-7093</orcidid><orcidid>https://orcid.org/0000-0003-2079-2896</orcidid><orcidid>https://orcid.org/0000-0002-8243-4456</orcidid><orcidid>https://orcid.org/0000-0001-7263-8917</orcidid><orcidid>https://orcid.org/0000-0003-3692-0952</orcidid><orcidid>https://orcid.org/0000-0002-4070-3400</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2515-7620
ispartof Environmental Research Communications, 2019-04, Vol.1 (2), p.21002
issn 2515-7620
2515-7620
language eng
recordid cdi_crossref_primary_10_1088_2515_7620_ab1042
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Institute of Physics Open Access Journal Titles
subjects Anaerobic microorganisms
ANME-2d
Archaea
Biodegradation
C-methane
Carbon
Environmental degradation
Gene sequencing
Greenhouse effect
Greenhouse gases
Isotopes
Lake sediments
Lakes
Methane
Microbial activity
Microorganisms
Organic matter
Oxidation
Permafrost
Pore water
rRNA 16S
Sediments
Stable isotopes
subsurface
title First evidence for cold-adapted anaerobic oxidation of methane in deep sediments of thermokarst lakes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T00%3A05%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20evidence%20for%20cold-adapted%20anaerobic%20oxidation%20of%20methane%20in%20deep%20sediments%20of%20thermokarst%20lakes&rft.jtitle=Environmental%20Research%20Communications&rft.au=Winkel,%20M&rft.date=2019-04-03&rft.volume=1&rft.issue=2&rft.spage=21002&rft.pages=21002-&rft.issn=2515-7620&rft.eissn=2515-7620&rft_id=info:doi/10.1088/2515-7620/ab1042&rft_dat=%3Cproquest_cross%3E2548129425%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548129425&rft_id=info:pmid/&rfr_iscdi=true