Induced drag in two dimensions in ideal fluids
In this paper we suggest a model for how a significant part of the drag forces on two-dimensional objects can be derived using the circulation that is naturally maintained around the objects. We assume incompressible and inviscid potential flow and that the circulation is already generated. The resu...
Gespeichert in:
Veröffentlicht in: | Journal of physics communications 2019-11, Vol.3 (11), p.115005 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 115005 |
container_title | Journal of physics communications |
container_volume | 3 |
creator | Meyer, R W Erland, S |
description | In this paper we suggest a model for how a significant part of the drag forces on two-dimensional objects can be derived using the circulation that is naturally maintained around the objects. We assume incompressible and inviscid potential flow and that the circulation is already generated. The resulting velocity field complements the one that is known to generate Prandtl's induced drag in three dimensions. We demonstrate how fluid particles in a velocity field are attracted towards an object, and that this, due to conservation of momentum, results not only in lift, but also in drag forces. The magnitude of a disturbance velocity can be derived from the circulation of bound and shed vortices accompanying the object and parameters taken from the von Kármán vortex street description. Another part of the drag is generated by vortices that emerge behind blunt bodies when fluid particles do not follow the surface of the objects. We obtain a mathematical description of the resistance of several types of blunt bodies and rotating cylinders. The model involves no parameters that are derived from empirical data. Still, this inviscid approach corresponds well with experimental data in viscous flow and is close to a mathematical empirical description of rotating cylinders by W. G. Bickley. |
doi_str_mv | 10.1088/2399-6528/ab5022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2399_6528_ab5022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545616926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-8530f317ad64e0d30af2d1e93ac4a1b8fe127e7eb4e8c72dd640d43a95fb781c3</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouKx791jw4sHuTjJNmx5l8WNhwYueQ5oPybLb1GSL-N_bUlEPIgzMMPzeDO8RcklhSUGIFcO6zkvOxEo1HBg7IbPv1emv-ZwsUtoBAKtq5MhnZLlpTa-tyUxUr5lvs-N7yIw_2Db50KZx441V-8zte2_SBTlzap_s4qvPycv93fP6Md8-PWzWt9tcI5bHXHAEh7RSpiwsGATlmKG2RqULRRvhLGWVrWxTWKErZgYMTIGq5q6pBNU4J1fT3S6Gt96mo9yFPrbDS8l4wUta1qwcKJgoHUNK0TrZRX9Q8UNSkGMwcnQuR-dyCmaQ3EwSH7qfm__g13_gu04HiZLSoTgAl51x-AmVJ2-T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545616926</pqid></control><display><type>article</type><title>Induced drag in two dimensions in ideal fluids</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Institute of Physics Open Access Journal Titles</source><creator>Meyer, R W ; Erland, S</creator><creatorcontrib>Meyer, R W ; Erland, S</creatorcontrib><description>In this paper we suggest a model for how a significant part of the drag forces on two-dimensional objects can be derived using the circulation that is naturally maintained around the objects. We assume incompressible and inviscid potential flow and that the circulation is already generated. The resulting velocity field complements the one that is known to generate Prandtl's induced drag in three dimensions. We demonstrate how fluid particles in a velocity field are attracted towards an object, and that this, due to conservation of momentum, results not only in lift, but also in drag forces. The magnitude of a disturbance velocity can be derived from the circulation of bound and shed vortices accompanying the object and parameters taken from the von Kármán vortex street description. Another part of the drag is generated by vortices that emerge behind blunt bodies when fluid particles do not follow the surface of the objects. We obtain a mathematical description of the resistance of several types of blunt bodies and rotating cylinders. The model involves no parameters that are derived from empirical data. Still, this inviscid approach corresponds well with experimental data in viscous flow and is close to a mathematical empirical description of rotating cylinders by W. G. Bickley.</description><identifier>ISSN: 2399-6528</identifier><identifier>EISSN: 2399-6528</identifier><identifier>DOI: 10.1088/2399-6528/ab5022</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>circulation ; drag coefficient ; ideal fluids ; induced drag ; potential flow ; Von Karman vortex street ; Vortices ; wing sections</subject><ispartof>Journal of physics communications, 2019-11, Vol.3 (11), p.115005</ispartof><rights>2019 The Author(s). Published by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c336t-8530f317ad64e0d30af2d1e93ac4a1b8fe127e7eb4e8c72dd640d43a95fb781c3</cites><orcidid>0000-0003-0175-8801 ; 0000-0003-1249-7264</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2399-6528/ab5022/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>315,781,785,865,27926,27927,38892,53869</link.rule.ids></links><search><creatorcontrib>Meyer, R W</creatorcontrib><creatorcontrib>Erland, S</creatorcontrib><title>Induced drag in two dimensions in ideal fluids</title><title>Journal of physics communications</title><addtitle>JPCO</addtitle><addtitle>J. Phys. Commun</addtitle><description>In this paper we suggest a model for how a significant part of the drag forces on two-dimensional objects can be derived using the circulation that is naturally maintained around the objects. We assume incompressible and inviscid potential flow and that the circulation is already generated. The resulting velocity field complements the one that is known to generate Prandtl's induced drag in three dimensions. We demonstrate how fluid particles in a velocity field are attracted towards an object, and that this, due to conservation of momentum, results not only in lift, but also in drag forces. The magnitude of a disturbance velocity can be derived from the circulation of bound and shed vortices accompanying the object and parameters taken from the von Kármán vortex street description. Another part of the drag is generated by vortices that emerge behind blunt bodies when fluid particles do not follow the surface of the objects. We obtain a mathematical description of the resistance of several types of blunt bodies and rotating cylinders. The model involves no parameters that are derived from empirical data. Still, this inviscid approach corresponds well with experimental data in viscous flow and is close to a mathematical empirical description of rotating cylinders by W. G. Bickley.</description><subject>circulation</subject><subject>drag coefficient</subject><subject>ideal fluids</subject><subject>induced drag</subject><subject>potential flow</subject><subject>Von Karman vortex street</subject><subject>Vortices</subject><subject>wing sections</subject><issn>2399-6528</issn><issn>2399-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM1LxDAQxYMouKx791jw4sHuTjJNmx5l8WNhwYueQ5oPybLb1GSL-N_bUlEPIgzMMPzeDO8RcklhSUGIFcO6zkvOxEo1HBg7IbPv1emv-ZwsUtoBAKtq5MhnZLlpTa-tyUxUr5lvs-N7yIw_2Db50KZx441V-8zte2_SBTlzap_s4qvPycv93fP6Md8-PWzWt9tcI5bHXHAEh7RSpiwsGATlmKG2RqULRRvhLGWVrWxTWKErZgYMTIGq5q6pBNU4J1fT3S6Gt96mo9yFPrbDS8l4wUta1qwcKJgoHUNK0TrZRX9Q8UNSkGMwcnQuR-dyCmaQ3EwSH7qfm__g13_gu04HiZLSoTgAl51x-AmVJ2-T</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Meyer, R W</creator><creator>Erland, S</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M2P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-0175-8801</orcidid><orcidid>https://orcid.org/0000-0003-1249-7264</orcidid></search><sort><creationdate>20191101</creationdate><title>Induced drag in two dimensions in ideal fluids</title><author>Meyer, R W ; Erland, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-8530f317ad64e0d30af2d1e93ac4a1b8fe127e7eb4e8c72dd640d43a95fb781c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>circulation</topic><topic>drag coefficient</topic><topic>ideal fluids</topic><topic>induced drag</topic><topic>potential flow</topic><topic>Von Karman vortex street</topic><topic>Vortices</topic><topic>wing sections</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meyer, R W</creatorcontrib><creatorcontrib>Erland, S</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meyer, R W</au><au>Erland, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Induced drag in two dimensions in ideal fluids</atitle><jtitle>Journal of physics communications</jtitle><stitle>JPCO</stitle><addtitle>J. Phys. Commun</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>3</volume><issue>11</issue><spage>115005</spage><pages>115005-</pages><issn>2399-6528</issn><eissn>2399-6528</eissn><abstract>In this paper we suggest a model for how a significant part of the drag forces on two-dimensional objects can be derived using the circulation that is naturally maintained around the objects. We assume incompressible and inviscid potential flow and that the circulation is already generated. The resulting velocity field complements the one that is known to generate Prandtl's induced drag in three dimensions. We demonstrate how fluid particles in a velocity field are attracted towards an object, and that this, due to conservation of momentum, results not only in lift, but also in drag forces. The magnitude of a disturbance velocity can be derived from the circulation of bound and shed vortices accompanying the object and parameters taken from the von Kármán vortex street description. Another part of the drag is generated by vortices that emerge behind blunt bodies when fluid particles do not follow the surface of the objects. We obtain a mathematical description of the resistance of several types of blunt bodies and rotating cylinders. The model involves no parameters that are derived from empirical data. Still, this inviscid approach corresponds well with experimental data in viscous flow and is close to a mathematical empirical description of rotating cylinders by W. G. Bickley.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2399-6528/ab5022</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0175-8801</orcidid><orcidid>https://orcid.org/0000-0003-1249-7264</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2399-6528 |
ispartof | Journal of physics communications, 2019-11, Vol.3 (11), p.115005 |
issn | 2399-6528 2399-6528 |
language | eng |
recordid | cdi_crossref_primary_10_1088_2399_6528_ab5022 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Institute of Physics Open Access Journal Titles |
subjects | circulation drag coefficient ideal fluids induced drag potential flow Von Karman vortex street Vortices wing sections |
title | Induced drag in two dimensions in ideal fluids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T10%3A39%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Induced%20drag%20in%20two%20dimensions%20in%20ideal%20fluids&rft.jtitle=Journal%20of%20physics%20communications&rft.au=Meyer,%20R%20W&rft.date=2019-11-01&rft.volume=3&rft.issue=11&rft.spage=115005&rft.pages=115005-&rft.issn=2399-6528&rft.eissn=2399-6528&rft_id=info:doi/10.1088/2399-6528/ab5022&rft_dat=%3Cproquest_cross%3E2545616926%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2545616926&rft_id=info:pmid/&rfr_iscdi=true |