On the Hamiltonian formulation, integrability and algebraic structures of the Rajeev-Ranken model

The integrable 1+1-dimensional SU(2) principal chiral model (PCM) serves as a toy-model for 3+1-dimensional Yang-Mills theory as it is asymptotically free and displays a mass gap. Interestingly, the PCM is 'pseudodual' to a scalar field theory introduced by Zakharov and Mikhailov and Nappi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics communications 2019-02, Vol.3 (2), p.25005
Hauptverfasser: Krishnaswami, Govind S, Vishnu, T R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 25005
container_title Journal of physics communications
container_volume 3
creator Krishnaswami, Govind S
Vishnu, T R
description The integrable 1+1-dimensional SU(2) principal chiral model (PCM) serves as a toy-model for 3+1-dimensional Yang-Mills theory as it is asymptotically free and displays a mass gap. Interestingly, the PCM is 'pseudodual' to a scalar field theory introduced by Zakharov and Mikhailov and Nappi that is strongly coupled in the ultraviolet and could serve as a toy-model for non-perturbative properties of theories with a Landau pole. Unlike the 'Euclidean' current algebra of the PCM, its pseudodual is based on a nilpotent current algebra. Recently, Rajeev and Ranken obtained a mechanical reduction by restricting the nilpotent scalar field theory to a class of constant energy-density classical waves expressible in terms of elliptic functions, whose quantization survives the passage to the strong-coupling limit. We study the Hamiltonian and Lagrangian formulations of this model and its classical integrability from an algebraic perspective, identifying Darboux coordinates, Lax pairs, classical r-matrices and a degenerate Poisson pencil. We identify Casimirs as well as a complete set of conserved quantities in involution and the canonical transformations they generate. They are related to Noether charges of the field theory and are shown to be generically independent, implying Liouville integrability. The singular submanifolds where this independence fails are identified and shown to be related to the static and circular submanifolds of the phase space. We also find an interesting relation between this model and the Neumann model allowing us to discover a new Hamiltonian formulation of the latter.
doi_str_mv 10.1088/2399-6528/ab02a9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2399_6528_ab02a9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545609757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-15c849006a216abf9bc1db2a6bb184f721c5ea2f5672ae7b26f88d40b83ade63</originalsourceid><addsrcrecordid>eNp1kMFLwzAUh4soOObuHgMevKwuSZs2PcpQJwwGY_fw0iYztUtqmgr77-2sqAc9vcfj-_0efFF0TfAdwZwvaFIUccYoX4DEFIqzaPJ9Ov-1X0azrqsxxjQvEpawSQQbi8KLQis4mCY4a8Ai7fyhbyAYZ-fI2KD2HqRpTDgisBWCZq-kB1OiLvi-DL1XHXL6s2YLtVLv8Rbsq7Lo4CrVXEUXGppOzb7mNNo9PuyWq3i9eXpe3q_jMuE0xISVPC0wzoCSDKQuZEkqSSGTkvBU55SUTAHVLMspqFzSTHNepVjyBCqVJdPoZqxtvXvrVRdE7Xpvh4-CspRluMhZPlB4pErvus4rLVpvDuCPgmBxUilOrsTJlRhVDpHbMWJc-9NZt6UTiaACU4YxE22lB3L-B_lv8QfTwIMu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545609757</pqid></control><display><type>article</type><title>On the Hamiltonian formulation, integrability and algebraic structures of the Rajeev-Ranken model</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Krishnaswami, Govind S ; Vishnu, T R</creator><creatorcontrib>Krishnaswami, Govind S ; Vishnu, T R</creatorcontrib><description>The integrable 1+1-dimensional SU(2) principal chiral model (PCM) serves as a toy-model for 3+1-dimensional Yang-Mills theory as it is asymptotically free and displays a mass gap. Interestingly, the PCM is 'pseudodual' to a scalar field theory introduced by Zakharov and Mikhailov and Nappi that is strongly coupled in the ultraviolet and could serve as a toy-model for non-perturbative properties of theories with a Landau pole. Unlike the 'Euclidean' current algebra of the PCM, its pseudodual is based on a nilpotent current algebra. Recently, Rajeev and Ranken obtained a mechanical reduction by restricting the nilpotent scalar field theory to a class of constant energy-density classical waves expressible in terms of elliptic functions, whose quantization survives the passage to the strong-coupling limit. We study the Hamiltonian and Lagrangian formulations of this model and its classical integrability from an algebraic perspective, identifying Darboux coordinates, Lax pairs, classical r-matrices and a degenerate Poisson pencil. We identify Casimirs as well as a complete set of conserved quantities in involution and the canonical transformations they generate. They are related to Noether charges of the field theory and are shown to be generically independent, implying Liouville integrability. The singular submanifolds where this independence fails are identified and shown to be related to the static and circular submanifolds of the phase space. We also find an interesting relation between this model and the Neumann model allowing us to discover a new Hamiltonian formulation of the latter.</description><identifier>ISSN: 2399-6528</identifier><identifier>EISSN: 2399-6528</identifier><identifier>DOI: 10.1088/2399-6528/ab02a9</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>classical r-matrix ; dual scalar field ; Lax pair ; Liouville integrability ; Neumann model ; nilpotent current algebra ; principal chiral model</subject><ispartof>Journal of physics communications, 2019-02, Vol.3 (2), p.25005</ispartof><rights>2019 The Author(s). Published by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-15c849006a216abf9bc1db2a6bb184f721c5ea2f5672ae7b26f88d40b83ade63</citedby><cites>FETCH-LOGICAL-c382t-15c849006a216abf9bc1db2a6bb184f721c5ea2f5672ae7b26f88d40b83ade63</cites><orcidid>0000-0001-7988-4926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2399-6528/ab02a9/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,778,782,862,27907,27908,38873,53850</link.rule.ids></links><search><creatorcontrib>Krishnaswami, Govind S</creatorcontrib><creatorcontrib>Vishnu, T R</creatorcontrib><title>On the Hamiltonian formulation, integrability and algebraic structures of the Rajeev-Ranken model</title><title>Journal of physics communications</title><addtitle>JPCO</addtitle><addtitle>J. Phys. Commun</addtitle><description>The integrable 1+1-dimensional SU(2) principal chiral model (PCM) serves as a toy-model for 3+1-dimensional Yang-Mills theory as it is asymptotically free and displays a mass gap. Interestingly, the PCM is 'pseudodual' to a scalar field theory introduced by Zakharov and Mikhailov and Nappi that is strongly coupled in the ultraviolet and could serve as a toy-model for non-perturbative properties of theories with a Landau pole. Unlike the 'Euclidean' current algebra of the PCM, its pseudodual is based on a nilpotent current algebra. Recently, Rajeev and Ranken obtained a mechanical reduction by restricting the nilpotent scalar field theory to a class of constant energy-density classical waves expressible in terms of elliptic functions, whose quantization survives the passage to the strong-coupling limit. We study the Hamiltonian and Lagrangian formulations of this model and its classical integrability from an algebraic perspective, identifying Darboux coordinates, Lax pairs, classical r-matrices and a degenerate Poisson pencil. We identify Casimirs as well as a complete set of conserved quantities in involution and the canonical transformations they generate. They are related to Noether charges of the field theory and are shown to be generically independent, implying Liouville integrability. The singular submanifolds where this independence fails are identified and shown to be related to the static and circular submanifolds of the phase space. We also find an interesting relation between this model and the Neumann model allowing us to discover a new Hamiltonian formulation of the latter.</description><subject>classical r-matrix</subject><subject>dual scalar field</subject><subject>Lax pair</subject><subject>Liouville integrability</subject><subject>Neumann model</subject><subject>nilpotent current algebra</subject><subject>principal chiral model</subject><issn>2399-6528</issn><issn>2399-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMFLwzAUh4soOObuHgMevKwuSZs2PcpQJwwGY_fw0iYztUtqmgr77-2sqAc9vcfj-_0efFF0TfAdwZwvaFIUccYoX4DEFIqzaPJ9Ov-1X0azrqsxxjQvEpawSQQbi8KLQis4mCY4a8Ai7fyhbyAYZ-fI2KD2HqRpTDgisBWCZq-kB1OiLvi-DL1XHXL6s2YLtVLv8Rbsq7Lo4CrVXEUXGppOzb7mNNo9PuyWq3i9eXpe3q_jMuE0xISVPC0wzoCSDKQuZEkqSSGTkvBU55SUTAHVLMspqFzSTHNepVjyBCqVJdPoZqxtvXvrVRdE7Xpvh4-CspRluMhZPlB4pErvus4rLVpvDuCPgmBxUilOrsTJlRhVDpHbMWJc-9NZt6UTiaACU4YxE22lB3L-B_lv8QfTwIMu</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Krishnaswami, Govind S</creator><creator>Vishnu, T R</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M2P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-7988-4926</orcidid></search><sort><creationdate>20190201</creationdate><title>On the Hamiltonian formulation, integrability and algebraic structures of the Rajeev-Ranken model</title><author>Krishnaswami, Govind S ; Vishnu, T R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-15c849006a216abf9bc1db2a6bb184f721c5ea2f5672ae7b26f88d40b83ade63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>classical r-matrix</topic><topic>dual scalar field</topic><topic>Lax pair</topic><topic>Liouville integrability</topic><topic>Neumann model</topic><topic>nilpotent current algebra</topic><topic>principal chiral model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krishnaswami, Govind S</creatorcontrib><creatorcontrib>Vishnu, T R</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Science Database (ProQuest)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krishnaswami, Govind S</au><au>Vishnu, T R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Hamiltonian formulation, integrability and algebraic structures of the Rajeev-Ranken model</atitle><jtitle>Journal of physics communications</jtitle><stitle>JPCO</stitle><addtitle>J. Phys. Commun</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>3</volume><issue>2</issue><spage>25005</spage><pages>25005-</pages><issn>2399-6528</issn><eissn>2399-6528</eissn><abstract>The integrable 1+1-dimensional SU(2) principal chiral model (PCM) serves as a toy-model for 3+1-dimensional Yang-Mills theory as it is asymptotically free and displays a mass gap. Interestingly, the PCM is 'pseudodual' to a scalar field theory introduced by Zakharov and Mikhailov and Nappi that is strongly coupled in the ultraviolet and could serve as a toy-model for non-perturbative properties of theories with a Landau pole. Unlike the 'Euclidean' current algebra of the PCM, its pseudodual is based on a nilpotent current algebra. Recently, Rajeev and Ranken obtained a mechanical reduction by restricting the nilpotent scalar field theory to a class of constant energy-density classical waves expressible in terms of elliptic functions, whose quantization survives the passage to the strong-coupling limit. We study the Hamiltonian and Lagrangian formulations of this model and its classical integrability from an algebraic perspective, identifying Darboux coordinates, Lax pairs, classical r-matrices and a degenerate Poisson pencil. We identify Casimirs as well as a complete set of conserved quantities in involution and the canonical transformations they generate. They are related to Noether charges of the field theory and are shown to be generically independent, implying Liouville integrability. The singular submanifolds where this independence fails are identified and shown to be related to the static and circular submanifolds of the phase space. We also find an interesting relation between this model and the Neumann model allowing us to discover a new Hamiltonian formulation of the latter.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2399-6528/ab02a9</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-7988-4926</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2399-6528
ispartof Journal of physics communications, 2019-02, Vol.3 (2), p.25005
issn 2399-6528
2399-6528
language eng
recordid cdi_crossref_primary_10_1088_2399_6528_ab02a9
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects classical r-matrix
dual scalar field
Lax pair
Liouville integrability
Neumann model
nilpotent current algebra
principal chiral model
title On the Hamiltonian formulation, integrability and algebraic structures of the Rajeev-Ranken model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T07%3A35%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Hamiltonian%20formulation,%20integrability%20and%20algebraic%20structures%20of%20the%20Rajeev-Ranken%20model&rft.jtitle=Journal%20of%20physics%20communications&rft.au=Krishnaswami,%20Govind%20S&rft.date=2019-02-01&rft.volume=3&rft.issue=2&rft.spage=25005&rft.pages=25005-&rft.issn=2399-6528&rft.eissn=2399-6528&rft_id=info:doi/10.1088/2399-6528/ab02a9&rft_dat=%3Cproquest_cross%3E2545609757%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2545609757&rft_id=info:pmid/&rfr_iscdi=true