Efficient and practical quantum compiler towards multi-qubit systems with deep reinforcement learning

Efficient quantum compiling is essential for complex quantum algorithms realization. The Solovay–Kitaev (S–K) theorem offers a theoretical lower bound on the required operations for approaching any unitary operator. However, it is still an open question that this lower bound can be actually reached...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum science and technology 2024-10, Vol.9 (4), p.45002
Hauptverfasser: Chen, Qiuhao, Du, Yuxuan, Jiao, Yuliang, Lu, Xiliang, Wu, Xingyao, Zhao, Qi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 45002
container_title Quantum science and technology
container_volume 9
creator Chen, Qiuhao
Du, Yuxuan
Jiao, Yuliang
Lu, Xiliang
Wu, Xingyao
Zhao, Qi
description Efficient quantum compiling is essential for complex quantum algorithms realization. The Solovay–Kitaev (S–K) theorem offers a theoretical lower bound on the required operations for approaching any unitary operator. However, it is still an open question that this lower bound can be actually reached in practice. Here, we present an efficient quantum compiler which, for the first time, approaches the S–K lower bound in practical implementations, both for single-qubit and two-qubit scenarios, marking a significant milestone. Our compiler leverages deep reinforcement learning (RL) techniques to address current limitations in terms of optimality and inference time. Furthermore, we show that our compiler is versatile by demonstrating comparable performance between inverse-free basis sets, which is always the case in real quantum devices, and inverse-closed sets. Our findings also emphasize the often-neglected constant term in scaling laws, bridging the gap between theory and practice in quantum compiling. These results highlight the potential of RL-based quantum compilers, offering efficiency and practicality while contributing novel insights to quantum compiling theory.
doi_str_mv 10.1088/2058-9565/ad420a
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2058_9565_ad420a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_2058_9565_ad420a</sourcerecordid><originalsourceid>FETCH-LOGICAL-c126t-b709cbe0c412de39c383243ccde1d4467cd05e4253a57fbb30b83ed13e79f84f3</originalsourceid><addsrcrecordid>eNpN0EtLAzEUBeAgCpbavcv8gbE3j3ktpdQHFNzoesjc3GhkXk0ylP57GSri6hzO4iw-xu4FPAioqq2EvMrqvMi3xmoJ5oqt_qbrf_2WbWL8BgAlhaihWDHaO-fR05C4GSyfgsHk0XT8OJshzT3HsZ98R4Gn8WSCjbyfu-Sz49z6xOM5JuojP_n0xS3RxAP5wY0BqV8uOzJh8MPnHbtxpou0-c01-3jav-9essPb8-vu8ZChkEXK2hJqbAlQC2lJ1agqJbVCtCSs1kWJFnLSMlcmL13bKmgrRVYoKmtXaafWDC6_GMYYA7lmCr434dwIaBapZqFoFormIqV-AMHOXyY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Efficient and practical quantum compiler towards multi-qubit systems with deep reinforcement learning</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Chen, Qiuhao ; Du, Yuxuan ; Jiao, Yuliang ; Lu, Xiliang ; Wu, Xingyao ; Zhao, Qi</creator><creatorcontrib>Chen, Qiuhao ; Du, Yuxuan ; Jiao, Yuliang ; Lu, Xiliang ; Wu, Xingyao ; Zhao, Qi</creatorcontrib><description>Efficient quantum compiling is essential for complex quantum algorithms realization. The Solovay–Kitaev (S–K) theorem offers a theoretical lower bound on the required operations for approaching any unitary operator. However, it is still an open question that this lower bound can be actually reached in practice. Here, we present an efficient quantum compiler which, for the first time, approaches the S–K lower bound in practical implementations, both for single-qubit and two-qubit scenarios, marking a significant milestone. Our compiler leverages deep reinforcement learning (RL) techniques to address current limitations in terms of optimality and inference time. Furthermore, we show that our compiler is versatile by demonstrating comparable performance between inverse-free basis sets, which is always the case in real quantum devices, and inverse-closed sets. Our findings also emphasize the often-neglected constant term in scaling laws, bridging the gap between theory and practice in quantum compiling. These results highlight the potential of RL-based quantum compilers, offering efficiency and practicality while contributing novel insights to quantum compiling theory.</description><identifier>ISSN: 2058-9565</identifier><identifier>EISSN: 2058-9565</identifier><identifier>DOI: 10.1088/2058-9565/ad420a</identifier><language>eng</language><ispartof>Quantum science and technology, 2024-10, Vol.9 (4), p.45002</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c126t-b709cbe0c412de39c383243ccde1d4467cd05e4253a57fbb30b83ed13e79f84f3</cites><orcidid>0000-0002-1193-9756 ; 0009-0008-2018-0367 ; 0009-0001-3795-4380 ; 0000-0002-7592-5994 ; 0000-0002-8091-0682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Chen, Qiuhao</creatorcontrib><creatorcontrib>Du, Yuxuan</creatorcontrib><creatorcontrib>Jiao, Yuliang</creatorcontrib><creatorcontrib>Lu, Xiliang</creatorcontrib><creatorcontrib>Wu, Xingyao</creatorcontrib><creatorcontrib>Zhao, Qi</creatorcontrib><title>Efficient and practical quantum compiler towards multi-qubit systems with deep reinforcement learning</title><title>Quantum science and technology</title><description>Efficient quantum compiling is essential for complex quantum algorithms realization. The Solovay–Kitaev (S–K) theorem offers a theoretical lower bound on the required operations for approaching any unitary operator. However, it is still an open question that this lower bound can be actually reached in practice. Here, we present an efficient quantum compiler which, for the first time, approaches the S–K lower bound in practical implementations, both for single-qubit and two-qubit scenarios, marking a significant milestone. Our compiler leverages deep reinforcement learning (RL) techniques to address current limitations in terms of optimality and inference time. Furthermore, we show that our compiler is versatile by demonstrating comparable performance between inverse-free basis sets, which is always the case in real quantum devices, and inverse-closed sets. Our findings also emphasize the often-neglected constant term in scaling laws, bridging the gap between theory and practice in quantum compiling. These results highlight the potential of RL-based quantum compilers, offering efficiency and practicality while contributing novel insights to quantum compiling theory.</description><issn>2058-9565</issn><issn>2058-9565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpN0EtLAzEUBeAgCpbavcv8gbE3j3ktpdQHFNzoesjc3GhkXk0ylP57GSri6hzO4iw-xu4FPAioqq2EvMrqvMi3xmoJ5oqt_qbrf_2WbWL8BgAlhaihWDHaO-fR05C4GSyfgsHk0XT8OJshzT3HsZ98R4Gn8WSCjbyfu-Sz49z6xOM5JuojP_n0xS3RxAP5wY0BqV8uOzJh8MPnHbtxpou0-c01-3jav-9essPb8-vu8ZChkEXK2hJqbAlQC2lJ1agqJbVCtCSs1kWJFnLSMlcmL13bKmgrRVYoKmtXaafWDC6_GMYYA7lmCr434dwIaBapZqFoFormIqV-AMHOXyY</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Chen, Qiuhao</creator><creator>Du, Yuxuan</creator><creator>Jiao, Yuliang</creator><creator>Lu, Xiliang</creator><creator>Wu, Xingyao</creator><creator>Zhao, Qi</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1193-9756</orcidid><orcidid>https://orcid.org/0009-0008-2018-0367</orcidid><orcidid>https://orcid.org/0009-0001-3795-4380</orcidid><orcidid>https://orcid.org/0000-0002-7592-5994</orcidid><orcidid>https://orcid.org/0000-0002-8091-0682</orcidid></search><sort><creationdate>20241001</creationdate><title>Efficient and practical quantum compiler towards multi-qubit systems with deep reinforcement learning</title><author>Chen, Qiuhao ; Du, Yuxuan ; Jiao, Yuliang ; Lu, Xiliang ; Wu, Xingyao ; Zhao, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c126t-b709cbe0c412de39c383243ccde1d4467cd05e4253a57fbb30b83ed13e79f84f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Qiuhao</creatorcontrib><creatorcontrib>Du, Yuxuan</creatorcontrib><creatorcontrib>Jiao, Yuliang</creatorcontrib><creatorcontrib>Lu, Xiliang</creatorcontrib><creatorcontrib>Wu, Xingyao</creatorcontrib><creatorcontrib>Zhao, Qi</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Qiuhao</au><au>Du, Yuxuan</au><au>Jiao, Yuliang</au><au>Lu, Xiliang</au><au>Wu, Xingyao</au><au>Zhao, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient and practical quantum compiler towards multi-qubit systems with deep reinforcement learning</atitle><jtitle>Quantum science and technology</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>9</volume><issue>4</issue><spage>45002</spage><pages>45002-</pages><issn>2058-9565</issn><eissn>2058-9565</eissn><abstract>Efficient quantum compiling is essential for complex quantum algorithms realization. The Solovay–Kitaev (S–K) theorem offers a theoretical lower bound on the required operations for approaching any unitary operator. However, it is still an open question that this lower bound can be actually reached in practice. Here, we present an efficient quantum compiler which, for the first time, approaches the S–K lower bound in practical implementations, both for single-qubit and two-qubit scenarios, marking a significant milestone. Our compiler leverages deep reinforcement learning (RL) techniques to address current limitations in terms of optimality and inference time. Furthermore, we show that our compiler is versatile by demonstrating comparable performance between inverse-free basis sets, which is always the case in real quantum devices, and inverse-closed sets. Our findings also emphasize the often-neglected constant term in scaling laws, bridging the gap between theory and practice in quantum compiling. These results highlight the potential of RL-based quantum compilers, offering efficiency and practicality while contributing novel insights to quantum compiling theory.</abstract><doi>10.1088/2058-9565/ad420a</doi><orcidid>https://orcid.org/0000-0002-1193-9756</orcidid><orcidid>https://orcid.org/0009-0008-2018-0367</orcidid><orcidid>https://orcid.org/0009-0001-3795-4380</orcidid><orcidid>https://orcid.org/0000-0002-7592-5994</orcidid><orcidid>https://orcid.org/0000-0002-8091-0682</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2058-9565
ispartof Quantum science and technology, 2024-10, Vol.9 (4), p.45002
issn 2058-9565
2058-9565
language eng
recordid cdi_crossref_primary_10_1088_2058_9565_ad420a
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title Efficient and practical quantum compiler towards multi-qubit systems with deep reinforcement learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T11%3A22%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20and%20practical%20quantum%20compiler%20towards%20multi-qubit%20systems%20with%20deep%20reinforcement%20learning&rft.jtitle=Quantum%20science%20and%20technology&rft.au=Chen,%20Qiuhao&rft.date=2024-10-01&rft.volume=9&rft.issue=4&rft.spage=45002&rft.pages=45002-&rft.issn=2058-9565&rft.eissn=2058-9565&rft_id=info:doi/10.1088/2058-9565/ad420a&rft_dat=%3Ccrossref%3E10_1088_2058_9565_ad420a%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true