Near-term distributed quantum computation using mean-field corrections and auxiliary qubits
Distributed quantum computation is often proposed to increase the scalability of quantum hardware, as it reduces cooperative noise and requisite connectivity by sharing quantum information between distant quantum devices. However, such exchange of quantum information itself poses unique engineering...
Gespeichert in:
Veröffentlicht in: | Quantum science and technology 2024-07, Vol.9 (3), p.35022 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 35022 |
container_title | Quantum science and technology |
container_volume | 9 |
creator | McClain Gomez, Abigail Patti, Taylor L Anandkumar, Anima Yelin, Susanne F |
description | Distributed quantum computation is often proposed to increase the scalability of quantum hardware, as it reduces cooperative noise and requisite connectivity by sharing quantum information between distant quantum devices. However, such exchange of quantum information itself poses unique engineering challenges, requiring high gate fidelity and costly non-local operations. To mitigate this, we propose near-term distributed quantum computing, focusing on approximate approaches that involve limited information transfer and conservative entanglement production. We first devise an approximate distributed computing scheme for the time evolution of quantum systems split across any combination of classical and quantum devices. Our procedure harnesses mean-field corrections and auxiliary qubits to link two or more devices classically, optimally encoding the auxiliary qubits to both minimize short-time evolution error and extend the approximate scheme’s performance to longer evolution times. We then expand the scheme to include limited quantum information transfer through selective qubit shuffling or teleportation, broadening our method’s applicability and boosting its performance. Finally, we build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms. To characterize our technique, we introduce a non-linear perturbation theory that discerns the critical role of our mean-field corrections in optimization and may be suitable for analyzing other non-linear quantum techniques. This fragmented pre-training is remarkably successful, reducing algorithmic error by orders of magnitude while requiring fewer iterations. |
doi_str_mv | 10.1088/2058-9565/ad3f45 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2058_9565_ad3f45</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>qstad3f45</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-dbd2969a6541533c27950aa3d6852913126ec0767d335bf4c59998e196c7c3e53</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOIyzd5kfYJ08mrRZyuALBt3oykVIk1QytGnNA_TfmzIiblzdyzn3XA4fAJcYXWPUtluCWFsJxtlWGdrX7ASsfqXTP_s52MR4QAhRgrFAfAXenqwKVbJhhMbFFFyXkzXwIyuf8gj1NM45qeQmD3N0_h2OVvmqd3YwxQzB6sWLUHkDVf50g1Phq8Q7l-IFOOvVEO3mZ67B693ty-6h2j_fP-5u9pUmDUuV6QwRXCjOaswoLaJgSClqeMuIwBQTbjVqeGMoZV1fayaEaC0WXDeaWkbXAB3_6jDFGGwv5-DG0kNiJBc-cgEgFwDyyKdEro4RN83yMOXgS8H_z78B_qBnrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Near-term distributed quantum computation using mean-field corrections and auxiliary qubits</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>McClain Gomez, Abigail ; Patti, Taylor L ; Anandkumar, Anima ; Yelin, Susanne F</creator><creatorcontrib>McClain Gomez, Abigail ; Patti, Taylor L ; Anandkumar, Anima ; Yelin, Susanne F</creatorcontrib><description>Distributed quantum computation is often proposed to increase the scalability of quantum hardware, as it reduces cooperative noise and requisite connectivity by sharing quantum information between distant quantum devices. However, such exchange of quantum information itself poses unique engineering challenges, requiring high gate fidelity and costly non-local operations. To mitigate this, we propose near-term distributed quantum computing, focusing on approximate approaches that involve limited information transfer and conservative entanglement production. We first devise an approximate distributed computing scheme for the time evolution of quantum systems split across any combination of classical and quantum devices. Our procedure harnesses mean-field corrections and auxiliary qubits to link two or more devices classically, optimally encoding the auxiliary qubits to both minimize short-time evolution error and extend the approximate scheme’s performance to longer evolution times. We then expand the scheme to include limited quantum information transfer through selective qubit shuffling or teleportation, broadening our method’s applicability and boosting its performance. Finally, we build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms. To characterize our technique, we introduce a non-linear perturbation theory that discerns the critical role of our mean-field corrections in optimization and may be suitable for analyzing other non-linear quantum techniques. This fragmented pre-training is remarkably successful, reducing algorithmic error by orders of magnitude while requiring fewer iterations.</description><identifier>ISSN: 2058-9565</identifier><identifier>EISSN: 2058-9565</identifier><identifier>DOI: 10.1088/2058-9565/ad3f45</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>distributed quantum computing ; near-term quantum computing ; quantum simulation ; variational quantum algorithms</subject><ispartof>Quantum science and technology, 2024-07, Vol.9 (3), p.35022</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c275t-dbd2969a6541533c27950aa3d6852913126ec0767d335bf4c59998e196c7c3e53</cites><orcidid>0000-0002-6974-6797 ; 0000-0002-4242-6072 ; 0000-0003-1655-9151 ; 0009-0002-0090-0941</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2058-9565/ad3f45/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>McClain Gomez, Abigail</creatorcontrib><creatorcontrib>Patti, Taylor L</creatorcontrib><creatorcontrib>Anandkumar, Anima</creatorcontrib><creatorcontrib>Yelin, Susanne F</creatorcontrib><title>Near-term distributed quantum computation using mean-field corrections and auxiliary qubits</title><title>Quantum science and technology</title><addtitle>QST</addtitle><addtitle>Quantum Sci. Technol</addtitle><description>Distributed quantum computation is often proposed to increase the scalability of quantum hardware, as it reduces cooperative noise and requisite connectivity by sharing quantum information between distant quantum devices. However, such exchange of quantum information itself poses unique engineering challenges, requiring high gate fidelity and costly non-local operations. To mitigate this, we propose near-term distributed quantum computing, focusing on approximate approaches that involve limited information transfer and conservative entanglement production. We first devise an approximate distributed computing scheme for the time evolution of quantum systems split across any combination of classical and quantum devices. Our procedure harnesses mean-field corrections and auxiliary qubits to link two or more devices classically, optimally encoding the auxiliary qubits to both minimize short-time evolution error and extend the approximate scheme’s performance to longer evolution times. We then expand the scheme to include limited quantum information transfer through selective qubit shuffling or teleportation, broadening our method’s applicability and boosting its performance. Finally, we build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms. To characterize our technique, we introduce a non-linear perturbation theory that discerns the critical role of our mean-field corrections in optimization and may be suitable for analyzing other non-linear quantum techniques. This fragmented pre-training is remarkably successful, reducing algorithmic error by orders of magnitude while requiring fewer iterations.</description><subject>distributed quantum computing</subject><subject>near-term quantum computing</subject><subject>quantum simulation</subject><subject>variational quantum algorithms</subject><issn>2058-9565</issn><issn>2058-9565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kEtLxDAUhYMoOIyzd5kfYJ08mrRZyuALBt3oykVIk1QytGnNA_TfmzIiblzdyzn3XA4fAJcYXWPUtluCWFsJxtlWGdrX7ASsfqXTP_s52MR4QAhRgrFAfAXenqwKVbJhhMbFFFyXkzXwIyuf8gj1NM45qeQmD3N0_h2OVvmqd3YwxQzB6sWLUHkDVf50g1Phq8Q7l-IFOOvVEO3mZ67B693ty-6h2j_fP-5u9pUmDUuV6QwRXCjOaswoLaJgSClqeMuIwBQTbjVqeGMoZV1fayaEaC0WXDeaWkbXAB3_6jDFGGwv5-DG0kNiJBc-cgEgFwDyyKdEro4RN83yMOXgS8H_z78B_qBnrw</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>McClain Gomez, Abigail</creator><creator>Patti, Taylor L</creator><creator>Anandkumar, Anima</creator><creator>Yelin, Susanne F</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6974-6797</orcidid><orcidid>https://orcid.org/0000-0002-4242-6072</orcidid><orcidid>https://orcid.org/0000-0003-1655-9151</orcidid><orcidid>https://orcid.org/0009-0002-0090-0941</orcidid></search><sort><creationdate>20240701</creationdate><title>Near-term distributed quantum computation using mean-field corrections and auxiliary qubits</title><author>McClain Gomez, Abigail ; Patti, Taylor L ; Anandkumar, Anima ; Yelin, Susanne F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-dbd2969a6541533c27950aa3d6852913126ec0767d335bf4c59998e196c7c3e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>distributed quantum computing</topic><topic>near-term quantum computing</topic><topic>quantum simulation</topic><topic>variational quantum algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McClain Gomez, Abigail</creatorcontrib><creatorcontrib>Patti, Taylor L</creatorcontrib><creatorcontrib>Anandkumar, Anima</creatorcontrib><creatorcontrib>Yelin, Susanne F</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Quantum science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McClain Gomez, Abigail</au><au>Patti, Taylor L</au><au>Anandkumar, Anima</au><au>Yelin, Susanne F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Near-term distributed quantum computation using mean-field corrections and auxiliary qubits</atitle><jtitle>Quantum science and technology</jtitle><stitle>QST</stitle><addtitle>Quantum Sci. Technol</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>9</volume><issue>3</issue><spage>35022</spage><pages>35022-</pages><issn>2058-9565</issn><eissn>2058-9565</eissn><abstract>Distributed quantum computation is often proposed to increase the scalability of quantum hardware, as it reduces cooperative noise and requisite connectivity by sharing quantum information between distant quantum devices. However, such exchange of quantum information itself poses unique engineering challenges, requiring high gate fidelity and costly non-local operations. To mitigate this, we propose near-term distributed quantum computing, focusing on approximate approaches that involve limited information transfer and conservative entanglement production. We first devise an approximate distributed computing scheme for the time evolution of quantum systems split across any combination of classical and quantum devices. Our procedure harnesses mean-field corrections and auxiliary qubits to link two or more devices classically, optimally encoding the auxiliary qubits to both minimize short-time evolution error and extend the approximate scheme’s performance to longer evolution times. We then expand the scheme to include limited quantum information transfer through selective qubit shuffling or teleportation, broadening our method’s applicability and boosting its performance. Finally, we build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms. To characterize our technique, we introduce a non-linear perturbation theory that discerns the critical role of our mean-field corrections in optimization and may be suitable for analyzing other non-linear quantum techniques. This fragmented pre-training is remarkably successful, reducing algorithmic error by orders of magnitude while requiring fewer iterations.</abstract><pub>IOP Publishing</pub><doi>10.1088/2058-9565/ad3f45</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-6974-6797</orcidid><orcidid>https://orcid.org/0000-0002-4242-6072</orcidid><orcidid>https://orcid.org/0000-0003-1655-9151</orcidid><orcidid>https://orcid.org/0009-0002-0090-0941</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2058-9565 |
ispartof | Quantum science and technology, 2024-07, Vol.9 (3), p.35022 |
issn | 2058-9565 2058-9565 |
language | eng |
recordid | cdi_crossref_primary_10_1088_2058_9565_ad3f45 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | distributed quantum computing near-term quantum computing quantum simulation variational quantum algorithms |
title | Near-term distributed quantum computation using mean-field corrections and auxiliary qubits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A49%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Near-term%20distributed%20quantum%20computation%20using%20mean-field%20corrections%20and%20auxiliary%20qubits&rft.jtitle=Quantum%20science%20and%20technology&rft.au=McClain%20Gomez,%20Abigail&rft.date=2024-07-01&rft.volume=9&rft.issue=3&rft.spage=35022&rft.pages=35022-&rft.issn=2058-9565&rft.eissn=2058-9565&rft_id=info:doi/10.1088/2058-9565/ad3f45&rft_dat=%3Ciop_cross%3Eqstad3f45%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |