Quantum Markov chain Monte Carlo with digital dissipative dynamics on quantum computers
Modeling the dynamics of a quantum system connected to the environment is critical for advancing our understanding of complex quantum processes, as most quantum processes in nature are affected by an environment. Modeling a macroscopic environment on a quantum simulator may be achieved by coupling i...
Gespeichert in:
Veröffentlicht in: | Quantum science and technology 2022-04, Vol.7 (2), p.25017 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 25017 |
container_title | Quantum science and technology |
container_volume | 7 |
creator | Metcalf, Mekena Stone, Emma Klymko, Katherine Kemper, Alexander F Sarovar, Mohan de Jong, Wibe A |
description | Modeling the dynamics of a quantum system connected to the environment is critical for advancing our understanding of complex quantum processes, as most quantum processes in nature are affected by an environment. Modeling a macroscopic environment on a quantum simulator may be achieved by coupling independent ancilla qubits that facilitate energy exchange in an appropriate manner with the system and mimic an environment. This approach requires a large, and possibly exponential number of ancillary degrees of freedom which is impractical. In contrast, we develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits. By combining periodic modulation of the ancilla energies, or spectral combing, with periodic reset operations, we are able to mimic interaction with a large environment and generate thermal states of interacting many-body systems. We evaluate the algorithm by simulating preparation of thermal states of the transverse Ising model. Our algorithm can also be viewed as a quantum Markov chain Monte Carlo process that allows sampling of the Gibbs distribution of a multivariate model. To demonstrate this we evaluate the accuracy of sampling Gibbs distributions of simple probabilistic graphical models using the algorithm. |
doi_str_mv | 10.1088/2058-9565/ac546a |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2058_9565_ac546a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>qstac546a</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-25f0e03d4f3a96e0d4d734755e1df0003403cbfe521dc06129e6c8671aae21183</originalsourceid><addsrcrecordid>eNp1UE1LAzEUDKJgqb17zMmTa1-SzX4cpagVWkRQPIaYZG1qd7NNspX-e3dpEQ96msdjZpgZhC4J3BAoiikFXiQlz_hUKp5m8gSNfl6nv-5zNAlhDQCMElJCNkJvz51sYlfjpfSfbofVStoGL10TDZ5Jv3H4y8YV1vbDRrnpMQTbymh3But9I2urAnYN3h5dlKvbLhofLtBZJTfBTI44Rq_3dy-zebJ4enic3S4SxTiLCeUVGGA6rZgsMwM61TlLc84N0dWQMwWm3ivDKdEKMkJLk6kiy4mUpq9QsDGCg6_yLgRvKtF6W0u_FwTEsI0YyouhvDhs00uuDhLrWrF2nW_6gGIbosgFFUA5kFy0uuqJ138Q__X9Bkd8cx4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantum Markov chain Monte Carlo with digital dissipative dynamics on quantum computers</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Metcalf, Mekena ; Stone, Emma ; Klymko, Katherine ; Kemper, Alexander F ; Sarovar, Mohan ; de Jong, Wibe A</creator><creatorcontrib>Metcalf, Mekena ; Stone, Emma ; Klymko, Katherine ; Kemper, Alexander F ; Sarovar, Mohan ; de Jong, Wibe A</creatorcontrib><description>Modeling the dynamics of a quantum system connected to the environment is critical for advancing our understanding of complex quantum processes, as most quantum processes in nature are affected by an environment. Modeling a macroscopic environment on a quantum simulator may be achieved by coupling independent ancilla qubits that facilitate energy exchange in an appropriate manner with the system and mimic an environment. This approach requires a large, and possibly exponential number of ancillary degrees of freedom which is impractical. In contrast, we develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits. By combining periodic modulation of the ancilla energies, or spectral combing, with periodic reset operations, we are able to mimic interaction with a large environment and generate thermal states of interacting many-body systems. We evaluate the algorithm by simulating preparation of thermal states of the transverse Ising model. Our algorithm can also be viewed as a quantum Markov chain Monte Carlo process that allows sampling of the Gibbs distribution of a multivariate model. To demonstrate this we evaluate the accuracy of sampling Gibbs distributions of simple probabilistic graphical models using the algorithm.</description><identifier>ISSN: 2058-9565</identifier><identifier>EISSN: 2058-9565</identifier><identifier>DOI: 10.1088/2058-9565/ac546a</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>algorithmic cooling ; quantum algorithm ; thermal state preparation</subject><ispartof>Quantum science and technology, 2022-04, Vol.7 (2), p.25017</ispartof><rights>2022 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-25f0e03d4f3a96e0d4d734755e1df0003403cbfe521dc06129e6c8671aae21183</citedby><cites>FETCH-LOGICAL-c353t-25f0e03d4f3a96e0d4d734755e1df0003403cbfe521dc06129e6c8671aae21183</cites><orcidid>0000-0001-9040-2924 ; 0000-0002-5426-5181 ; 0000-0003-4091-9508 ; 0000-0002-7114-8315</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2058-9565/ac546a/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Metcalf, Mekena</creatorcontrib><creatorcontrib>Stone, Emma</creatorcontrib><creatorcontrib>Klymko, Katherine</creatorcontrib><creatorcontrib>Kemper, Alexander F</creatorcontrib><creatorcontrib>Sarovar, Mohan</creatorcontrib><creatorcontrib>de Jong, Wibe A</creatorcontrib><title>Quantum Markov chain Monte Carlo with digital dissipative dynamics on quantum computers</title><title>Quantum science and technology</title><addtitle>QST</addtitle><addtitle>Quantum Sci. Technol</addtitle><description>Modeling the dynamics of a quantum system connected to the environment is critical for advancing our understanding of complex quantum processes, as most quantum processes in nature are affected by an environment. Modeling a macroscopic environment on a quantum simulator may be achieved by coupling independent ancilla qubits that facilitate energy exchange in an appropriate manner with the system and mimic an environment. This approach requires a large, and possibly exponential number of ancillary degrees of freedom which is impractical. In contrast, we develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits. By combining periodic modulation of the ancilla energies, or spectral combing, with periodic reset operations, we are able to mimic interaction with a large environment and generate thermal states of interacting many-body systems. We evaluate the algorithm by simulating preparation of thermal states of the transverse Ising model. Our algorithm can also be viewed as a quantum Markov chain Monte Carlo process that allows sampling of the Gibbs distribution of a multivariate model. To demonstrate this we evaluate the accuracy of sampling Gibbs distributions of simple probabilistic graphical models using the algorithm.</description><subject>algorithmic cooling</subject><subject>quantum algorithm</subject><subject>thermal state preparation</subject><issn>2058-9565</issn><issn>2058-9565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEUDKJgqb17zMmTa1-SzX4cpagVWkRQPIaYZG1qd7NNspX-e3dpEQ96msdjZpgZhC4J3BAoiikFXiQlz_hUKp5m8gSNfl6nv-5zNAlhDQCMElJCNkJvz51sYlfjpfSfbofVStoGL10TDZ5Jv3H4y8YV1vbDRrnpMQTbymh3But9I2urAnYN3h5dlKvbLhofLtBZJTfBTI44Rq_3dy-zebJ4enic3S4SxTiLCeUVGGA6rZgsMwM61TlLc84N0dWQMwWm3ivDKdEKMkJLk6kiy4mUpq9QsDGCg6_yLgRvKtF6W0u_FwTEsI0YyouhvDhs00uuDhLrWrF2nW_6gGIbosgFFUA5kFy0uuqJ138Q__X9Bkd8cx4</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Metcalf, Mekena</creator><creator>Stone, Emma</creator><creator>Klymko, Katherine</creator><creator>Kemper, Alexander F</creator><creator>Sarovar, Mohan</creator><creator>de Jong, Wibe A</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9040-2924</orcidid><orcidid>https://orcid.org/0000-0002-5426-5181</orcidid><orcidid>https://orcid.org/0000-0003-4091-9508</orcidid><orcidid>https://orcid.org/0000-0002-7114-8315</orcidid></search><sort><creationdate>20220401</creationdate><title>Quantum Markov chain Monte Carlo with digital dissipative dynamics on quantum computers</title><author>Metcalf, Mekena ; Stone, Emma ; Klymko, Katherine ; Kemper, Alexander F ; Sarovar, Mohan ; de Jong, Wibe A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-25f0e03d4f3a96e0d4d734755e1df0003403cbfe521dc06129e6c8671aae21183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>algorithmic cooling</topic><topic>quantum algorithm</topic><topic>thermal state preparation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Metcalf, Mekena</creatorcontrib><creatorcontrib>Stone, Emma</creatorcontrib><creatorcontrib>Klymko, Katherine</creatorcontrib><creatorcontrib>Kemper, Alexander F</creatorcontrib><creatorcontrib>Sarovar, Mohan</creatorcontrib><creatorcontrib>de Jong, Wibe A</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Metcalf, Mekena</au><au>Stone, Emma</au><au>Klymko, Katherine</au><au>Kemper, Alexander F</au><au>Sarovar, Mohan</au><au>de Jong, Wibe A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Markov chain Monte Carlo with digital dissipative dynamics on quantum computers</atitle><jtitle>Quantum science and technology</jtitle><stitle>QST</stitle><addtitle>Quantum Sci. Technol</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>7</volume><issue>2</issue><spage>25017</spage><pages>25017-</pages><issn>2058-9565</issn><eissn>2058-9565</eissn><abstract>Modeling the dynamics of a quantum system connected to the environment is critical for advancing our understanding of complex quantum processes, as most quantum processes in nature are affected by an environment. Modeling a macroscopic environment on a quantum simulator may be achieved by coupling independent ancilla qubits that facilitate energy exchange in an appropriate manner with the system and mimic an environment. This approach requires a large, and possibly exponential number of ancillary degrees of freedom which is impractical. In contrast, we develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits. By combining periodic modulation of the ancilla energies, or spectral combing, with periodic reset operations, we are able to mimic interaction with a large environment and generate thermal states of interacting many-body systems. We evaluate the algorithm by simulating preparation of thermal states of the transverse Ising model. Our algorithm can also be viewed as a quantum Markov chain Monte Carlo process that allows sampling of the Gibbs distribution of a multivariate model. To demonstrate this we evaluate the accuracy of sampling Gibbs distributions of simple probabilistic graphical models using the algorithm.</abstract><pub>IOP Publishing</pub><doi>10.1088/2058-9565/ac546a</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9040-2924</orcidid><orcidid>https://orcid.org/0000-0002-5426-5181</orcidid><orcidid>https://orcid.org/0000-0003-4091-9508</orcidid><orcidid>https://orcid.org/0000-0002-7114-8315</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2058-9565 |
ispartof | Quantum science and technology, 2022-04, Vol.7 (2), p.25017 |
issn | 2058-9565 2058-9565 |
language | eng |
recordid | cdi_crossref_primary_10_1088_2058_9565_ac546a |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | algorithmic cooling quantum algorithm thermal state preparation |
title | Quantum Markov chain Monte Carlo with digital dissipative dynamics on quantum computers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A52%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Markov%20chain%20Monte%20Carlo%20with%20digital%20dissipative%20dynamics%20on%20quantum%20computers&rft.jtitle=Quantum%20science%20and%20technology&rft.au=Metcalf,%20Mekena&rft.date=2022-04-01&rft.volume=7&rft.issue=2&rft.spage=25017&rft.pages=25017-&rft.issn=2058-9565&rft.eissn=2058-9565&rft_id=info:doi/10.1088/2058-9565/ac546a&rft_dat=%3Ciop_cross%3Eqstac546a%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |