Optimizing entanglement generation and distribution using genetic algorithms
Long-distance quantum communication via entanglement distribution is of great importance for the quantum internet. However, scaling up to such long distances has proved challenging due to the loss of photons, which grows exponentially with the distance covered. Quantum repeaters could in theory be u...
Gespeichert in:
Veröffentlicht in: | Quantum science and technology 2021-07, Vol.6 (3), p.35007 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 35007 |
container_title | Quantum science and technology |
container_volume | 6 |
creator | Ferreira da Silva, Francisco Torres-Knoop, Ariana Coopmans, Tim Maier, David Wehner, Stephanie |
description | Long-distance quantum communication via entanglement distribution is of great importance for the quantum internet. However, scaling up to such long distances has proved challenging due to the loss of photons, which grows exponentially with the distance covered. Quantum repeaters could in theory be used to extend the distances over which entanglement can be distributed, but in practice hardware quality is still lacking. Furthermore, it is generally not clear how an improvement in a certain repeater parameter, such as memory quality or attempt rate, impacts the overall network performance, rendering the path toward scalable quantum repeaters unclear. In this work we propose a methodology based on genetic algorithms and simulations of quantum repeater chains for optimization of entanglement generation and distribution. By applying it to simulations of several different repeater chains, including real-world fiber topology, we demonstrate that it can be used to answer questions such as what are the minimum viable quantum repeaters satisfying given network performance benchmarks. This methodology constitutes an invaluable tool for the development of a blueprint for a pan-European quantum internet. We have made our code, in the form of NetSquid simulations and the
smart-stopos
optimization tool, freely available for use either locally or on high-performance computing centers. |
doi_str_mv | 10.1088/2058-9565/abfc93 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2058_9565_abfc93</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>qstabfc93</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-af12a56d748879c04b41d11bd12ada6b944816fabcde4dd7eacda9926218dda23</originalsourceid><addsrcrecordid>eNp1UD1PwzAUtBBIVKU7YyYmQu04cewRVXxJlbrAbL3YTnCVOMF2Bvj1JAQhBpje6XR3encIXRJ8QzDn2wwXPBUFK7ZQ1UrQE7T6oU5_4XO0CeGIMaYZIQKzFdofhmg7-2FdkxgXwTWt6SaQNMYZD9H2LgGnE21D9LYav4gxzPJZEa1KoG16b-NrFy7QWQ1tMJvvu0Yv93fPu8d0f3h42t3uU0ULGlOoSQYF02XOeSkUzqucaEIqPdEaWCXynBNWQ6W0ybUuDSgNQmQsI1xryOga4SVX-T4Eb2o5eNuBf5cEy3kQOTeWc2O5DDJZrhaL7Qd57EfvpgflW4iSSSoxLTAu5aDrSXj9h_Df3E-rRnHE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimizing entanglement generation and distribution using genetic algorithms</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Ferreira da Silva, Francisco ; Torres-Knoop, Ariana ; Coopmans, Tim ; Maier, David ; Wehner, Stephanie</creator><creatorcontrib>Ferreira da Silva, Francisco ; Torres-Knoop, Ariana ; Coopmans, Tim ; Maier, David ; Wehner, Stephanie</creatorcontrib><description>Long-distance quantum communication via entanglement distribution is of great importance for the quantum internet. However, scaling up to such long distances has proved challenging due to the loss of photons, which grows exponentially with the distance covered. Quantum repeaters could in theory be used to extend the distances over which entanglement can be distributed, but in practice hardware quality is still lacking. Furthermore, it is generally not clear how an improvement in a certain repeater parameter, such as memory quality or attempt rate, impacts the overall network performance, rendering the path toward scalable quantum repeaters unclear. In this work we propose a methodology based on genetic algorithms and simulations of quantum repeater chains for optimization of entanglement generation and distribution. By applying it to simulations of several different repeater chains, including real-world fiber topology, we demonstrate that it can be used to answer questions such as what are the minimum viable quantum repeaters satisfying given network performance benchmarks. This methodology constitutes an invaluable tool for the development of a blueprint for a pan-European quantum internet. We have made our code, in the form of NetSquid simulations and the
smart-stopos
optimization tool, freely available for use either locally or on high-performance computing centers.</description><identifier>ISSN: 2058-9565</identifier><identifier>EISSN: 2058-9565</identifier><identifier>DOI: 10.1088/2058-9565/abfc93</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>entanglement distribution ; genetic algorithms ; optimization ; quantum internet ; quantum network ; quantum repeater ; repeater chain</subject><ispartof>Quantum science and technology, 2021-07, Vol.6 (3), p.35007</ispartof><rights>2021 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-af12a56d748879c04b41d11bd12ada6b944816fabcde4dd7eacda9926218dda23</citedby><cites>FETCH-LOGICAL-c353t-af12a56d748879c04b41d11bd12ada6b944816fabcde4dd7eacda9926218dda23</cites><orcidid>0000-0002-9780-0949 ; 0000-0001-8976-2965 ; 0000-0002-8433-0730 ; 0000-0003-3642-4350</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2058-9565/abfc93/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,777,781,27905,27906,53827,53874</link.rule.ids></links><search><creatorcontrib>Ferreira da Silva, Francisco</creatorcontrib><creatorcontrib>Torres-Knoop, Ariana</creatorcontrib><creatorcontrib>Coopmans, Tim</creatorcontrib><creatorcontrib>Maier, David</creatorcontrib><creatorcontrib>Wehner, Stephanie</creatorcontrib><title>Optimizing entanglement generation and distribution using genetic algorithms</title><title>Quantum science and technology</title><addtitle>QST</addtitle><addtitle>Quantum Sci. Technol</addtitle><description>Long-distance quantum communication via entanglement distribution is of great importance for the quantum internet. However, scaling up to such long distances has proved challenging due to the loss of photons, which grows exponentially with the distance covered. Quantum repeaters could in theory be used to extend the distances over which entanglement can be distributed, but in practice hardware quality is still lacking. Furthermore, it is generally not clear how an improvement in a certain repeater parameter, such as memory quality or attempt rate, impacts the overall network performance, rendering the path toward scalable quantum repeaters unclear. In this work we propose a methodology based on genetic algorithms and simulations of quantum repeater chains for optimization of entanglement generation and distribution. By applying it to simulations of several different repeater chains, including real-world fiber topology, we demonstrate that it can be used to answer questions such as what are the minimum viable quantum repeaters satisfying given network performance benchmarks. This methodology constitutes an invaluable tool for the development of a blueprint for a pan-European quantum internet. We have made our code, in the form of NetSquid simulations and the
smart-stopos
optimization tool, freely available for use either locally or on high-performance computing centers.</description><subject>entanglement distribution</subject><subject>genetic algorithms</subject><subject>optimization</subject><subject>quantum internet</subject><subject>quantum network</subject><subject>quantum repeater</subject><subject>repeater chain</subject><issn>2058-9565</issn><issn>2058-9565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1UD1PwzAUtBBIVKU7YyYmQu04cewRVXxJlbrAbL3YTnCVOMF2Bvj1JAQhBpje6XR3encIXRJ8QzDn2wwXPBUFK7ZQ1UrQE7T6oU5_4XO0CeGIMaYZIQKzFdofhmg7-2FdkxgXwTWt6SaQNMYZD9H2LgGnE21D9LYav4gxzPJZEa1KoG16b-NrFy7QWQ1tMJvvu0Yv93fPu8d0f3h42t3uU0ULGlOoSQYF02XOeSkUzqucaEIqPdEaWCXynBNWQ6W0ybUuDSgNQmQsI1xryOga4SVX-T4Eb2o5eNuBf5cEy3kQOTeWc2O5DDJZrhaL7Qd57EfvpgflW4iSSSoxLTAu5aDrSXj9h_Df3E-rRnHE</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Ferreira da Silva, Francisco</creator><creator>Torres-Knoop, Ariana</creator><creator>Coopmans, Tim</creator><creator>Maier, David</creator><creator>Wehner, Stephanie</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9780-0949</orcidid><orcidid>https://orcid.org/0000-0001-8976-2965</orcidid><orcidid>https://orcid.org/0000-0002-8433-0730</orcidid><orcidid>https://orcid.org/0000-0003-3642-4350</orcidid></search><sort><creationdate>20210701</creationdate><title>Optimizing entanglement generation and distribution using genetic algorithms</title><author>Ferreira da Silva, Francisco ; Torres-Knoop, Ariana ; Coopmans, Tim ; Maier, David ; Wehner, Stephanie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-af12a56d748879c04b41d11bd12ada6b944816fabcde4dd7eacda9926218dda23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>entanglement distribution</topic><topic>genetic algorithms</topic><topic>optimization</topic><topic>quantum internet</topic><topic>quantum network</topic><topic>quantum repeater</topic><topic>repeater chain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferreira da Silva, Francisco</creatorcontrib><creatorcontrib>Torres-Knoop, Ariana</creatorcontrib><creatorcontrib>Coopmans, Tim</creatorcontrib><creatorcontrib>Maier, David</creatorcontrib><creatorcontrib>Wehner, Stephanie</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Quantum science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferreira da Silva, Francisco</au><au>Torres-Knoop, Ariana</au><au>Coopmans, Tim</au><au>Maier, David</au><au>Wehner, Stephanie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing entanglement generation and distribution using genetic algorithms</atitle><jtitle>Quantum science and technology</jtitle><stitle>QST</stitle><addtitle>Quantum Sci. Technol</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>6</volume><issue>3</issue><spage>35007</spage><pages>35007-</pages><issn>2058-9565</issn><eissn>2058-9565</eissn><abstract>Long-distance quantum communication via entanglement distribution is of great importance for the quantum internet. However, scaling up to such long distances has proved challenging due to the loss of photons, which grows exponentially with the distance covered. Quantum repeaters could in theory be used to extend the distances over which entanglement can be distributed, but in practice hardware quality is still lacking. Furthermore, it is generally not clear how an improvement in a certain repeater parameter, such as memory quality or attempt rate, impacts the overall network performance, rendering the path toward scalable quantum repeaters unclear. In this work we propose a methodology based on genetic algorithms and simulations of quantum repeater chains for optimization of entanglement generation and distribution. By applying it to simulations of several different repeater chains, including real-world fiber topology, we demonstrate that it can be used to answer questions such as what are the minimum viable quantum repeaters satisfying given network performance benchmarks. This methodology constitutes an invaluable tool for the development of a blueprint for a pan-European quantum internet. We have made our code, in the form of NetSquid simulations and the
smart-stopos
optimization tool, freely available for use either locally or on high-performance computing centers.</abstract><pub>IOP Publishing</pub><doi>10.1088/2058-9565/abfc93</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-9780-0949</orcidid><orcidid>https://orcid.org/0000-0001-8976-2965</orcidid><orcidid>https://orcid.org/0000-0002-8433-0730</orcidid><orcidid>https://orcid.org/0000-0003-3642-4350</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2058-9565 |
ispartof | Quantum science and technology, 2021-07, Vol.6 (3), p.35007 |
issn | 2058-9565 2058-9565 |
language | eng |
recordid | cdi_crossref_primary_10_1088_2058_9565_abfc93 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | entanglement distribution genetic algorithms optimization quantum internet quantum network quantum repeater repeater chain |
title | Optimizing entanglement generation and distribution using genetic algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T02%3A24%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20entanglement%20generation%20and%20distribution%20using%20genetic%20algorithms&rft.jtitle=Quantum%20science%20and%20technology&rft.au=Ferreira%20da%20Silva,%20Francisco&rft.date=2021-07-01&rft.volume=6&rft.issue=3&rft.spage=35007&rft.pages=35007-&rft.issn=2058-9565&rft.eissn=2058-9565&rft_id=info:doi/10.1088/2058-9565/abfc93&rft_dat=%3Ciop_cross%3Eqstabfc93%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |