Optimizing entanglement generation and distribution using genetic algorithms

Long-distance quantum communication via entanglement distribution is of great importance for the quantum internet. However, scaling up to such long distances has proved challenging due to the loss of photons, which grows exponentially with the distance covered. Quantum repeaters could in theory be u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum science and technology 2021-07, Vol.6 (3), p.35007
Hauptverfasser: Ferreira da Silva, Francisco, Torres-Knoop, Ariana, Coopmans, Tim, Maier, David, Wehner, Stephanie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 35007
container_title Quantum science and technology
container_volume 6
creator Ferreira da Silva, Francisco
Torres-Knoop, Ariana
Coopmans, Tim
Maier, David
Wehner, Stephanie
description Long-distance quantum communication via entanglement distribution is of great importance for the quantum internet. However, scaling up to such long distances has proved challenging due to the loss of photons, which grows exponentially with the distance covered. Quantum repeaters could in theory be used to extend the distances over which entanglement can be distributed, but in practice hardware quality is still lacking. Furthermore, it is generally not clear how an improvement in a certain repeater parameter, such as memory quality or attempt rate, impacts the overall network performance, rendering the path toward scalable quantum repeaters unclear. In this work we propose a methodology based on genetic algorithms and simulations of quantum repeater chains for optimization of entanglement generation and distribution. By applying it to simulations of several different repeater chains, including real-world fiber topology, we demonstrate that it can be used to answer questions such as what are the minimum viable quantum repeaters satisfying given network performance benchmarks. This methodology constitutes an invaluable tool for the development of a blueprint for a pan-European quantum internet. We have made our code, in the form of NetSquid simulations and the smart-stopos optimization tool, freely available for use either locally or on high-performance computing centers.
doi_str_mv 10.1088/2058-9565/abfc93
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2058_9565_abfc93</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>qstabfc93</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-af12a56d748879c04b41d11bd12ada6b944816fabcde4dd7eacda9926218dda23</originalsourceid><addsrcrecordid>eNp1UD1PwzAUtBBIVKU7YyYmQu04cewRVXxJlbrAbL3YTnCVOMF2Bvj1JAQhBpje6XR3encIXRJ8QzDn2wwXPBUFK7ZQ1UrQE7T6oU5_4XO0CeGIMaYZIQKzFdofhmg7-2FdkxgXwTWt6SaQNMYZD9H2LgGnE21D9LYav4gxzPJZEa1KoG16b-NrFy7QWQ1tMJvvu0Yv93fPu8d0f3h42t3uU0ULGlOoSQYF02XOeSkUzqucaEIqPdEaWCXynBNWQ6W0ybUuDSgNQmQsI1xryOga4SVX-T4Eb2o5eNuBf5cEy3kQOTeWc2O5DDJZrhaL7Qd57EfvpgflW4iSSSoxLTAu5aDrSXj9h_Df3E-rRnHE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimizing entanglement generation and distribution using genetic algorithms</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Ferreira da Silva, Francisco ; Torres-Knoop, Ariana ; Coopmans, Tim ; Maier, David ; Wehner, Stephanie</creator><creatorcontrib>Ferreira da Silva, Francisco ; Torres-Knoop, Ariana ; Coopmans, Tim ; Maier, David ; Wehner, Stephanie</creatorcontrib><description>Long-distance quantum communication via entanglement distribution is of great importance for the quantum internet. However, scaling up to such long distances has proved challenging due to the loss of photons, which grows exponentially with the distance covered. Quantum repeaters could in theory be used to extend the distances over which entanglement can be distributed, but in practice hardware quality is still lacking. Furthermore, it is generally not clear how an improvement in a certain repeater parameter, such as memory quality or attempt rate, impacts the overall network performance, rendering the path toward scalable quantum repeaters unclear. In this work we propose a methodology based on genetic algorithms and simulations of quantum repeater chains for optimization of entanglement generation and distribution. By applying it to simulations of several different repeater chains, including real-world fiber topology, we demonstrate that it can be used to answer questions such as what are the minimum viable quantum repeaters satisfying given network performance benchmarks. This methodology constitutes an invaluable tool for the development of a blueprint for a pan-European quantum internet. We have made our code, in the form of NetSquid simulations and the smart-stopos optimization tool, freely available for use either locally or on high-performance computing centers.</description><identifier>ISSN: 2058-9565</identifier><identifier>EISSN: 2058-9565</identifier><identifier>DOI: 10.1088/2058-9565/abfc93</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>entanglement distribution ; genetic algorithms ; optimization ; quantum internet ; quantum network ; quantum repeater ; repeater chain</subject><ispartof>Quantum science and technology, 2021-07, Vol.6 (3), p.35007</ispartof><rights>2021 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-af12a56d748879c04b41d11bd12ada6b944816fabcde4dd7eacda9926218dda23</citedby><cites>FETCH-LOGICAL-c353t-af12a56d748879c04b41d11bd12ada6b944816fabcde4dd7eacda9926218dda23</cites><orcidid>0000-0002-9780-0949 ; 0000-0001-8976-2965 ; 0000-0002-8433-0730 ; 0000-0003-3642-4350</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2058-9565/abfc93/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,777,781,27905,27906,53827,53874</link.rule.ids></links><search><creatorcontrib>Ferreira da Silva, Francisco</creatorcontrib><creatorcontrib>Torres-Knoop, Ariana</creatorcontrib><creatorcontrib>Coopmans, Tim</creatorcontrib><creatorcontrib>Maier, David</creatorcontrib><creatorcontrib>Wehner, Stephanie</creatorcontrib><title>Optimizing entanglement generation and distribution using genetic algorithms</title><title>Quantum science and technology</title><addtitle>QST</addtitle><addtitle>Quantum Sci. Technol</addtitle><description>Long-distance quantum communication via entanglement distribution is of great importance for the quantum internet. However, scaling up to such long distances has proved challenging due to the loss of photons, which grows exponentially with the distance covered. Quantum repeaters could in theory be used to extend the distances over which entanglement can be distributed, but in practice hardware quality is still lacking. Furthermore, it is generally not clear how an improvement in a certain repeater parameter, such as memory quality or attempt rate, impacts the overall network performance, rendering the path toward scalable quantum repeaters unclear. In this work we propose a methodology based on genetic algorithms and simulations of quantum repeater chains for optimization of entanglement generation and distribution. By applying it to simulations of several different repeater chains, including real-world fiber topology, we demonstrate that it can be used to answer questions such as what are the minimum viable quantum repeaters satisfying given network performance benchmarks. This methodology constitutes an invaluable tool for the development of a blueprint for a pan-European quantum internet. We have made our code, in the form of NetSquid simulations and the smart-stopos optimization tool, freely available for use either locally or on high-performance computing centers.</description><subject>entanglement distribution</subject><subject>genetic algorithms</subject><subject>optimization</subject><subject>quantum internet</subject><subject>quantum network</subject><subject>quantum repeater</subject><subject>repeater chain</subject><issn>2058-9565</issn><issn>2058-9565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1UD1PwzAUtBBIVKU7YyYmQu04cewRVXxJlbrAbL3YTnCVOMF2Bvj1JAQhBpje6XR3encIXRJ8QzDn2wwXPBUFK7ZQ1UrQE7T6oU5_4XO0CeGIMaYZIQKzFdofhmg7-2FdkxgXwTWt6SaQNMYZD9H2LgGnE21D9LYav4gxzPJZEa1KoG16b-NrFy7QWQ1tMJvvu0Yv93fPu8d0f3h42t3uU0ULGlOoSQYF02XOeSkUzqucaEIqPdEaWCXynBNWQ6W0ybUuDSgNQmQsI1xryOga4SVX-T4Eb2o5eNuBf5cEy3kQOTeWc2O5DDJZrhaL7Qd57EfvpgflW4iSSSoxLTAu5aDrSXj9h_Df3E-rRnHE</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Ferreira da Silva, Francisco</creator><creator>Torres-Knoop, Ariana</creator><creator>Coopmans, Tim</creator><creator>Maier, David</creator><creator>Wehner, Stephanie</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9780-0949</orcidid><orcidid>https://orcid.org/0000-0001-8976-2965</orcidid><orcidid>https://orcid.org/0000-0002-8433-0730</orcidid><orcidid>https://orcid.org/0000-0003-3642-4350</orcidid></search><sort><creationdate>20210701</creationdate><title>Optimizing entanglement generation and distribution using genetic algorithms</title><author>Ferreira da Silva, Francisco ; Torres-Knoop, Ariana ; Coopmans, Tim ; Maier, David ; Wehner, Stephanie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-af12a56d748879c04b41d11bd12ada6b944816fabcde4dd7eacda9926218dda23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>entanglement distribution</topic><topic>genetic algorithms</topic><topic>optimization</topic><topic>quantum internet</topic><topic>quantum network</topic><topic>quantum repeater</topic><topic>repeater chain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferreira da Silva, Francisco</creatorcontrib><creatorcontrib>Torres-Knoop, Ariana</creatorcontrib><creatorcontrib>Coopmans, Tim</creatorcontrib><creatorcontrib>Maier, David</creatorcontrib><creatorcontrib>Wehner, Stephanie</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Quantum science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferreira da Silva, Francisco</au><au>Torres-Knoop, Ariana</au><au>Coopmans, Tim</au><au>Maier, David</au><au>Wehner, Stephanie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing entanglement generation and distribution using genetic algorithms</atitle><jtitle>Quantum science and technology</jtitle><stitle>QST</stitle><addtitle>Quantum Sci. Technol</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>6</volume><issue>3</issue><spage>35007</spage><pages>35007-</pages><issn>2058-9565</issn><eissn>2058-9565</eissn><abstract>Long-distance quantum communication via entanglement distribution is of great importance for the quantum internet. However, scaling up to such long distances has proved challenging due to the loss of photons, which grows exponentially with the distance covered. Quantum repeaters could in theory be used to extend the distances over which entanglement can be distributed, but in practice hardware quality is still lacking. Furthermore, it is generally not clear how an improvement in a certain repeater parameter, such as memory quality or attempt rate, impacts the overall network performance, rendering the path toward scalable quantum repeaters unclear. In this work we propose a methodology based on genetic algorithms and simulations of quantum repeater chains for optimization of entanglement generation and distribution. By applying it to simulations of several different repeater chains, including real-world fiber topology, we demonstrate that it can be used to answer questions such as what are the minimum viable quantum repeaters satisfying given network performance benchmarks. This methodology constitutes an invaluable tool for the development of a blueprint for a pan-European quantum internet. We have made our code, in the form of NetSquid simulations and the smart-stopos optimization tool, freely available for use either locally or on high-performance computing centers.</abstract><pub>IOP Publishing</pub><doi>10.1088/2058-9565/abfc93</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-9780-0949</orcidid><orcidid>https://orcid.org/0000-0001-8976-2965</orcidid><orcidid>https://orcid.org/0000-0002-8433-0730</orcidid><orcidid>https://orcid.org/0000-0003-3642-4350</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2058-9565
ispartof Quantum science and technology, 2021-07, Vol.6 (3), p.35007
issn 2058-9565
2058-9565
language eng
recordid cdi_crossref_primary_10_1088_2058_9565_abfc93
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects entanglement distribution
genetic algorithms
optimization
quantum internet
quantum network
quantum repeater
repeater chain
title Optimizing entanglement generation and distribution using genetic algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T02%3A24%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20entanglement%20generation%20and%20distribution%20using%20genetic%20algorithms&rft.jtitle=Quantum%20science%20and%20technology&rft.au=Ferreira%20da%20Silva,%20Francisco&rft.date=2021-07-01&rft.volume=6&rft.issue=3&rft.spage=35007&rft.pages=35007-&rft.issn=2058-9565&rft.eissn=2058-9565&rft_id=info:doi/10.1088/2058-9565/abfc93&rft_dat=%3Ciop_cross%3Eqstabfc93%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true