Diamond optomechanical crystals with embedded nitrogen-vacancy centers
Hybrid quantum devices, in which disparate quantum elements are combined in order to achieve enhanced functionality, have received much attention in recent years due to their exciting potential to address key problems in quantum information processing, communication, and control. Specifically, signi...
Gespeichert in:
Veröffentlicht in: | Quantum science and technology 2019-03, Vol.4 (2), p.24009 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 24009 |
container_title | Quantum science and technology |
container_volume | 4 |
creator | Cady, Jeffrey V Michel, Ohad Lee, Kenneth W Patel, Rishi N Sarabalis, Christopher J Safavi-Naeini, Amir H Bleszynski Jayich, Ania C |
description | Hybrid quantum devices, in which disparate quantum elements are combined in order to achieve enhanced functionality, have received much attention in recent years due to their exciting potential to address key problems in quantum information processing, communication, and control. Specifically, significant progress has been made in the field of hybrid mechanical devices, in which a qubit is coupled to a mechanical oscillator. High cooperativity in such devices has been demonstrated with superconducting qubits, and coupling defect qubits to mechanical elements via crystal strain has enabled novel methods of qubit measurement and control. In this paper we demonstrate the fabrication of diamond optomechanical crystals (OMCs) with embedded nitrogen-vacancy (NV) centers, a preliminary step toward reaching the quantum regime with defect qubit hybrid mechanical devices. We measure optical and mechanical resonances of diamond OMCs as well as the spin coherence of single embedded NV centers. We find that the spin has long coherence times T 2 * = 1.5 s and T2 = 72 s despite its proximity to nanofabricated surfaces. Finally, we discuss potential improvements of these devices and prospects for future experiments in the quantum regime. |
doi_str_mv | 10.1088/2058-9565/ab043e |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2058_9565_ab043e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>qstab043e</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-4c52c2d65edb8b1cf131472d8266df4bf39b4e4edb223da95a2db4d2f76f31be3</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIVNA7x5w4Ebp-JE2OqFBAqsQFzpYfa5qqsYNtQP17UhUhDnDa1e7MaGYIuaBwTaFpZgyqpmyrupopDYLjEZn8nI5_7adkmtIGADijtIV6Qpa3neqDt0UYcujRrJXvjNoWJu5SVttUfHZ5XWCv0Vq0he9yDK_oyw9llDe7wqDPGNM5OXEjGqff84y8LO-eFw_l6un-cXGzKg2nNJfCVMwwW1dodaOpcZRTMWe2YXVtndCOt1qgGL-McavaSjGrhWVuXjtONfIzAgddE0NKEZ0cYteruJMU5L4Kuc8q91nloYqRcnmgdGGQm_Ae_WhQvqUshWQSmABo5WDdCLz6A_iv7heXem5O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Diamond optomechanical crystals with embedded nitrogen-vacancy centers</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Cady, Jeffrey V ; Michel, Ohad ; Lee, Kenneth W ; Patel, Rishi N ; Sarabalis, Christopher J ; Safavi-Naeini, Amir H ; Bleszynski Jayich, Ania C</creator><creatorcontrib>Cady, Jeffrey V ; Michel, Ohad ; Lee, Kenneth W ; Patel, Rishi N ; Sarabalis, Christopher J ; Safavi-Naeini, Amir H ; Bleszynski Jayich, Ania C</creatorcontrib><description>Hybrid quantum devices, in which disparate quantum elements are combined in order to achieve enhanced functionality, have received much attention in recent years due to their exciting potential to address key problems in quantum information processing, communication, and control. Specifically, significant progress has been made in the field of hybrid mechanical devices, in which a qubit is coupled to a mechanical oscillator. High cooperativity in such devices has been demonstrated with superconducting qubits, and coupling defect qubits to mechanical elements via crystal strain has enabled novel methods of qubit measurement and control. In this paper we demonstrate the fabrication of diamond optomechanical crystals (OMCs) with embedded nitrogen-vacancy (NV) centers, a preliminary step toward reaching the quantum regime with defect qubit hybrid mechanical devices. We measure optical and mechanical resonances of diamond OMCs as well as the spin coherence of single embedded NV centers. We find that the spin has long coherence times T 2 * = 1.5 s and T2 = 72 s despite its proximity to nanofabricated surfaces. Finally, we discuss potential improvements of these devices and prospects for future experiments in the quantum regime.</description><identifier>ISSN: 2058-9565</identifier><identifier>EISSN: 2058-9565</identifier><identifier>DOI: 10.1088/2058-9565/ab043e</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>diamond ; quantum optomechanics ; spin physics</subject><ispartof>Quantum science and technology, 2019-03, Vol.4 (2), p.24009</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-4c52c2d65edb8b1cf131472d8266df4bf39b4e4edb223da95a2db4d2f76f31be3</citedby><cites>FETCH-LOGICAL-c311t-4c52c2d65edb8b1cf131472d8266df4bf39b4e4edb223da95a2db4d2f76f31be3</cites><orcidid>0000-0001-6176-1274 ; 0000-0003-3480-7032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2058-9565/ab043e/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27915,27916,53837,53884</link.rule.ids></links><search><creatorcontrib>Cady, Jeffrey V</creatorcontrib><creatorcontrib>Michel, Ohad</creatorcontrib><creatorcontrib>Lee, Kenneth W</creatorcontrib><creatorcontrib>Patel, Rishi N</creatorcontrib><creatorcontrib>Sarabalis, Christopher J</creatorcontrib><creatorcontrib>Safavi-Naeini, Amir H</creatorcontrib><creatorcontrib>Bleszynski Jayich, Ania C</creatorcontrib><title>Diamond optomechanical crystals with embedded nitrogen-vacancy centers</title><title>Quantum science and technology</title><addtitle>QST</addtitle><addtitle>Quantum Sci. Technol</addtitle><description>Hybrid quantum devices, in which disparate quantum elements are combined in order to achieve enhanced functionality, have received much attention in recent years due to their exciting potential to address key problems in quantum information processing, communication, and control. Specifically, significant progress has been made in the field of hybrid mechanical devices, in which a qubit is coupled to a mechanical oscillator. High cooperativity in such devices has been demonstrated with superconducting qubits, and coupling defect qubits to mechanical elements via crystal strain has enabled novel methods of qubit measurement and control. In this paper we demonstrate the fabrication of diamond optomechanical crystals (OMCs) with embedded nitrogen-vacancy (NV) centers, a preliminary step toward reaching the quantum regime with defect qubit hybrid mechanical devices. We measure optical and mechanical resonances of diamond OMCs as well as the spin coherence of single embedded NV centers. We find that the spin has long coherence times T 2 * = 1.5 s and T2 = 72 s despite its proximity to nanofabricated surfaces. Finally, we discuss potential improvements of these devices and prospects for future experiments in the quantum regime.</description><subject>diamond</subject><subject>quantum optomechanics</subject><subject>spin physics</subject><issn>2058-9565</issn><issn>2058-9565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIVNA7x5w4Ebp-JE2OqFBAqsQFzpYfa5qqsYNtQP17UhUhDnDa1e7MaGYIuaBwTaFpZgyqpmyrupopDYLjEZn8nI5_7adkmtIGADijtIV6Qpa3neqDt0UYcujRrJXvjNoWJu5SVttUfHZ5XWCv0Vq0he9yDK_oyw9llDe7wqDPGNM5OXEjGqff84y8LO-eFw_l6un-cXGzKg2nNJfCVMwwW1dodaOpcZRTMWe2YXVtndCOt1qgGL-McavaSjGrhWVuXjtONfIzAgddE0NKEZ0cYteruJMU5L4Kuc8q91nloYqRcnmgdGGQm_Ae_WhQvqUshWQSmABo5WDdCLz6A_iv7heXem5O</recordid><startdate>20190305</startdate><enddate>20190305</enddate><creator>Cady, Jeffrey V</creator><creator>Michel, Ohad</creator><creator>Lee, Kenneth W</creator><creator>Patel, Rishi N</creator><creator>Sarabalis, Christopher J</creator><creator>Safavi-Naeini, Amir H</creator><creator>Bleszynski Jayich, Ania C</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6176-1274</orcidid><orcidid>https://orcid.org/0000-0003-3480-7032</orcidid></search><sort><creationdate>20190305</creationdate><title>Diamond optomechanical crystals with embedded nitrogen-vacancy centers</title><author>Cady, Jeffrey V ; Michel, Ohad ; Lee, Kenneth W ; Patel, Rishi N ; Sarabalis, Christopher J ; Safavi-Naeini, Amir H ; Bleszynski Jayich, Ania C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-4c52c2d65edb8b1cf131472d8266df4bf39b4e4edb223da95a2db4d2f76f31be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>diamond</topic><topic>quantum optomechanics</topic><topic>spin physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cady, Jeffrey V</creatorcontrib><creatorcontrib>Michel, Ohad</creatorcontrib><creatorcontrib>Lee, Kenneth W</creatorcontrib><creatorcontrib>Patel, Rishi N</creatorcontrib><creatorcontrib>Sarabalis, Christopher J</creatorcontrib><creatorcontrib>Safavi-Naeini, Amir H</creatorcontrib><creatorcontrib>Bleszynski Jayich, Ania C</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cady, Jeffrey V</au><au>Michel, Ohad</au><au>Lee, Kenneth W</au><au>Patel, Rishi N</au><au>Sarabalis, Christopher J</au><au>Safavi-Naeini, Amir H</au><au>Bleszynski Jayich, Ania C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diamond optomechanical crystals with embedded nitrogen-vacancy centers</atitle><jtitle>Quantum science and technology</jtitle><stitle>QST</stitle><addtitle>Quantum Sci. Technol</addtitle><date>2019-03-05</date><risdate>2019</risdate><volume>4</volume><issue>2</issue><spage>24009</spage><pages>24009-</pages><issn>2058-9565</issn><eissn>2058-9565</eissn><coden>NJOPFM</coden><abstract>Hybrid quantum devices, in which disparate quantum elements are combined in order to achieve enhanced functionality, have received much attention in recent years due to their exciting potential to address key problems in quantum information processing, communication, and control. Specifically, significant progress has been made in the field of hybrid mechanical devices, in which a qubit is coupled to a mechanical oscillator. High cooperativity in such devices has been demonstrated with superconducting qubits, and coupling defect qubits to mechanical elements via crystal strain has enabled novel methods of qubit measurement and control. In this paper we demonstrate the fabrication of diamond optomechanical crystals (OMCs) with embedded nitrogen-vacancy (NV) centers, a preliminary step toward reaching the quantum regime with defect qubit hybrid mechanical devices. We measure optical and mechanical resonances of diamond OMCs as well as the spin coherence of single embedded NV centers. We find that the spin has long coherence times T 2 * = 1.5 s and T2 = 72 s despite its proximity to nanofabricated surfaces. Finally, we discuss potential improvements of these devices and prospects for future experiments in the quantum regime.</abstract><pub>IOP Publishing</pub><doi>10.1088/2058-9565/ab043e</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6176-1274</orcidid><orcidid>https://orcid.org/0000-0003-3480-7032</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2058-9565 |
ispartof | Quantum science and technology, 2019-03, Vol.4 (2), p.24009 |
issn | 2058-9565 2058-9565 |
language | eng |
recordid | cdi_crossref_primary_10_1088_2058_9565_ab043e |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | diamond quantum optomechanics spin physics |
title | Diamond optomechanical crystals with embedded nitrogen-vacancy centers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A35%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diamond%20optomechanical%20crystals%20with%20embedded%20nitrogen-vacancy%20centers&rft.jtitle=Quantum%20science%20and%20technology&rft.au=Cady,%20Jeffrey%20V&rft.date=2019-03-05&rft.volume=4&rft.issue=2&rft.spage=24009&rft.pages=24009-&rft.issn=2058-9565&rft.eissn=2058-9565&rft.coden=NJOPFM&rft_id=info:doi/10.1088/2058-9565/ab043e&rft_dat=%3Ciop_cross%3Eqstab043e%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |