Quantum autoencoders via quantum adders with genetic algorithms
The quantum autoencoder is a recent paradigm in the field of quantum machine learning, which may enable an enhanced use of resources in quantum technologies. To this end, quantum neural networks with less nodes in the inner than in the outer layers were considered. Here, we propose a useful connecti...
Gespeichert in:
Veröffentlicht in: | Quantum science and technology 2019-01, Vol.4 (1), p.14007 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 14007 |
container_title | Quantum science and technology |
container_volume | 4 |
creator | Lamata, L Alvarez-Rodriguez, U Martín-Guerrero, J D Sanz, M Solano, E |
description | The quantum autoencoder is a recent paradigm in the field of quantum machine learning, which may enable an enhanced use of resources in quantum technologies. To this end, quantum neural networks with less nodes in the inner than in the outer layers were considered. Here, we propose a useful connection between quantum autoencoders and quantum adders, which approximately add two unknown quantum states supported in different quantum systems. Specifically, this link allows us to employ optimized approximate quantum adders, obtained with genetic algorithms, for the implementation of quantum autoencoders for a variety of initial states. Furthermore, we can also directly optimize the quantum autoencoders via genetic algorithms. Our approach opens a different path for the design of quantum autoencoders in controllable quantum platforms. |
doi_str_mv | 10.1088/2058-9565/aae22b |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2058_9565_aae22b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>qstaae22b</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-e19bdbd93426564a6d9915562955445fe2acc5c6ab9ea627d7af1428f09f18c93</originalsourceid><addsrcrecordid>eNp9UE1Lw0AUXETBUnv3mJMnY99-NnsSKX5BQQQ9Ly_7UVPapN1NFP-9iVXxIJ7eY97MY2YIOaVwQaEopgxkkWup5BTRM1YekNEPdPhrPyaTlFYAwBmlGtSIXD52WLfdJsOubXxtG-djyl4rzHbfB_cJvVXtS7b0tW8rm-F62cQe2KQTchRwnfzka47J88310_wuXzzc3s-vFrnlkre5p7p0pdNcMCWVQOW0plIqpqUUQgbP0FppFZbao2IzN8NABSsC6EALq_mYwP6vjU1K0QezjdUG47uhYIYOzBDSDCHNvoNecr6XVM3WrJou1r3B_-hnf9B3qTXCUANUAMzM1gX-AYM3azk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantum autoencoders via quantum adders with genetic algorithms</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Lamata, L ; Alvarez-Rodriguez, U ; Martín-Guerrero, J D ; Sanz, M ; Solano, E</creator><creatorcontrib>Lamata, L ; Alvarez-Rodriguez, U ; Martín-Guerrero, J D ; Sanz, M ; Solano, E</creatorcontrib><description>The quantum autoencoder is a recent paradigm in the field of quantum machine learning, which may enable an enhanced use of resources in quantum technologies. To this end, quantum neural networks with less nodes in the inner than in the outer layers were considered. Here, we propose a useful connection between quantum autoencoders and quantum adders, which approximately add two unknown quantum states supported in different quantum systems. Specifically, this link allows us to employ optimized approximate quantum adders, obtained with genetic algorithms, for the implementation of quantum autoencoders for a variety of initial states. Furthermore, we can also directly optimize the quantum autoencoders via genetic algorithms. Our approach opens a different path for the design of quantum autoencoders in controllable quantum platforms.</description><identifier>ISSN: 2058-9565</identifier><identifier>EISSN: 2058-9565</identifier><identifier>DOI: 10.1088/2058-9565/aae22b</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>genetic algorithms ; quantum adder ; quantum autoencoder ; quantum machine learning</subject><ispartof>Quantum science and technology, 2019-01, Vol.4 (1), p.14007</ispartof><rights>2018 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-e19bdbd93426564a6d9915562955445fe2acc5c6ab9ea627d7af1428f09f18c93</citedby><cites>FETCH-LOGICAL-c353t-e19bdbd93426564a6d9915562955445fe2acc5c6ab9ea627d7af1428f09f18c93</cites><orcidid>0000-0003-1615-9035 ; 0000-0002-9504-8685 ; 0000-0001-9378-0285</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2058-9565/aae22b/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Lamata, L</creatorcontrib><creatorcontrib>Alvarez-Rodriguez, U</creatorcontrib><creatorcontrib>Martín-Guerrero, J D</creatorcontrib><creatorcontrib>Sanz, M</creatorcontrib><creatorcontrib>Solano, E</creatorcontrib><title>Quantum autoencoders via quantum adders with genetic algorithms</title><title>Quantum science and technology</title><addtitle>QST</addtitle><addtitle>Quantum Sci. Technol</addtitle><description>The quantum autoencoder is a recent paradigm in the field of quantum machine learning, which may enable an enhanced use of resources in quantum technologies. To this end, quantum neural networks with less nodes in the inner than in the outer layers were considered. Here, we propose a useful connection between quantum autoencoders and quantum adders, which approximately add two unknown quantum states supported in different quantum systems. Specifically, this link allows us to employ optimized approximate quantum adders, obtained with genetic algorithms, for the implementation of quantum autoencoders for a variety of initial states. Furthermore, we can also directly optimize the quantum autoencoders via genetic algorithms. Our approach opens a different path for the design of quantum autoencoders in controllable quantum platforms.</description><subject>genetic algorithms</subject><subject>quantum adder</subject><subject>quantum autoencoder</subject><subject>quantum machine learning</subject><issn>2058-9565</issn><issn>2058-9565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UE1Lw0AUXETBUnv3mJMnY99-NnsSKX5BQQQ9Ly_7UVPapN1NFP-9iVXxIJ7eY97MY2YIOaVwQaEopgxkkWup5BTRM1YekNEPdPhrPyaTlFYAwBmlGtSIXD52WLfdJsOubXxtG-djyl4rzHbfB_cJvVXtS7b0tW8rm-F62cQe2KQTchRwnfzka47J88310_wuXzzc3s-vFrnlkre5p7p0pdNcMCWVQOW0plIqpqUUQgbP0FppFZbao2IzN8NABSsC6EALq_mYwP6vjU1K0QezjdUG47uhYIYOzBDSDCHNvoNecr6XVM3WrJou1r3B_-hnf9B3qTXCUANUAMzM1gX-AYM3azk</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Lamata, L</creator><creator>Alvarez-Rodriguez, U</creator><creator>Martín-Guerrero, J D</creator><creator>Sanz, M</creator><creator>Solano, E</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1615-9035</orcidid><orcidid>https://orcid.org/0000-0002-9504-8685</orcidid><orcidid>https://orcid.org/0000-0001-9378-0285</orcidid></search><sort><creationdate>20190101</creationdate><title>Quantum autoencoders via quantum adders with genetic algorithms</title><author>Lamata, L ; Alvarez-Rodriguez, U ; Martín-Guerrero, J D ; Sanz, M ; Solano, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-e19bdbd93426564a6d9915562955445fe2acc5c6ab9ea627d7af1428f09f18c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>genetic algorithms</topic><topic>quantum adder</topic><topic>quantum autoencoder</topic><topic>quantum machine learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lamata, L</creatorcontrib><creatorcontrib>Alvarez-Rodriguez, U</creatorcontrib><creatorcontrib>Martín-Guerrero, J D</creatorcontrib><creatorcontrib>Sanz, M</creatorcontrib><creatorcontrib>Solano, E</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lamata, L</au><au>Alvarez-Rodriguez, U</au><au>Martín-Guerrero, J D</au><au>Sanz, M</au><au>Solano, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum autoencoders via quantum adders with genetic algorithms</atitle><jtitle>Quantum science and technology</jtitle><stitle>QST</stitle><addtitle>Quantum Sci. Technol</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>4</volume><issue>1</issue><spage>14007</spage><pages>14007-</pages><issn>2058-9565</issn><eissn>2058-9565</eissn><abstract>The quantum autoencoder is a recent paradigm in the field of quantum machine learning, which may enable an enhanced use of resources in quantum technologies. To this end, quantum neural networks with less nodes in the inner than in the outer layers were considered. Here, we propose a useful connection between quantum autoencoders and quantum adders, which approximately add two unknown quantum states supported in different quantum systems. Specifically, this link allows us to employ optimized approximate quantum adders, obtained with genetic algorithms, for the implementation of quantum autoencoders for a variety of initial states. Furthermore, we can also directly optimize the quantum autoencoders via genetic algorithms. Our approach opens a different path for the design of quantum autoencoders in controllable quantum platforms.</abstract><pub>IOP Publishing</pub><doi>10.1088/2058-9565/aae22b</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1615-9035</orcidid><orcidid>https://orcid.org/0000-0002-9504-8685</orcidid><orcidid>https://orcid.org/0000-0001-9378-0285</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2058-9565 |
ispartof | Quantum science and technology, 2019-01, Vol.4 (1), p.14007 |
issn | 2058-9565 2058-9565 |
language | eng |
recordid | cdi_crossref_primary_10_1088_2058_9565_aae22b |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | genetic algorithms quantum adder quantum autoencoder quantum machine learning |
title | Quantum autoencoders via quantum adders with genetic algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A50%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20autoencoders%20via%20quantum%20adders%20with%20genetic%20algorithms&rft.jtitle=Quantum%20science%20and%20technology&rft.au=Lamata,%20L&rft.date=2019-01-01&rft.volume=4&rft.issue=1&rft.spage=14007&rft.pages=14007-&rft.issn=2058-9565&rft.eissn=2058-9565&rft_id=info:doi/10.1088/2058-9565/aae22b&rft_dat=%3Ciop_cross%3Eqstaae22b%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |