Quantum autoencoders via quantum adders with genetic algorithms

The quantum autoencoder is a recent paradigm in the field of quantum machine learning, which may enable an enhanced use of resources in quantum technologies. To this end, quantum neural networks with less nodes in the inner than in the outer layers were considered. Here, we propose a useful connecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum science and technology 2019-01, Vol.4 (1), p.14007
Hauptverfasser: Lamata, L, Alvarez-Rodriguez, U, Martín-Guerrero, J D, Sanz, M, Solano, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 14007
container_title Quantum science and technology
container_volume 4
creator Lamata, L
Alvarez-Rodriguez, U
Martín-Guerrero, J D
Sanz, M
Solano, E
description The quantum autoencoder is a recent paradigm in the field of quantum machine learning, which may enable an enhanced use of resources in quantum technologies. To this end, quantum neural networks with less nodes in the inner than in the outer layers were considered. Here, we propose a useful connection between quantum autoencoders and quantum adders, which approximately add two unknown quantum states supported in different quantum systems. Specifically, this link allows us to employ optimized approximate quantum adders, obtained with genetic algorithms, for the implementation of quantum autoencoders for a variety of initial states. Furthermore, we can also directly optimize the quantum autoencoders via genetic algorithms. Our approach opens a different path for the design of quantum autoencoders in controllable quantum platforms.
doi_str_mv 10.1088/2058-9565/aae22b
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2058_9565_aae22b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>qstaae22b</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-e19bdbd93426564a6d9915562955445fe2acc5c6ab9ea627d7af1428f09f18c93</originalsourceid><addsrcrecordid>eNp9UE1Lw0AUXETBUnv3mJMnY99-NnsSKX5BQQQ9Ly_7UVPapN1NFP-9iVXxIJ7eY97MY2YIOaVwQaEopgxkkWup5BTRM1YekNEPdPhrPyaTlFYAwBmlGtSIXD52WLfdJsOubXxtG-djyl4rzHbfB_cJvVXtS7b0tW8rm-F62cQe2KQTchRwnfzka47J88310_wuXzzc3s-vFrnlkre5p7p0pdNcMCWVQOW0plIqpqUUQgbP0FppFZbao2IzN8NABSsC6EALq_mYwP6vjU1K0QezjdUG47uhYIYOzBDSDCHNvoNecr6XVM3WrJou1r3B_-hnf9B3qTXCUANUAMzM1gX-AYM3azk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantum autoencoders via quantum adders with genetic algorithms</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Lamata, L ; Alvarez-Rodriguez, U ; Martín-Guerrero, J D ; Sanz, M ; Solano, E</creator><creatorcontrib>Lamata, L ; Alvarez-Rodriguez, U ; Martín-Guerrero, J D ; Sanz, M ; Solano, E</creatorcontrib><description>The quantum autoencoder is a recent paradigm in the field of quantum machine learning, which may enable an enhanced use of resources in quantum technologies. To this end, quantum neural networks with less nodes in the inner than in the outer layers were considered. Here, we propose a useful connection between quantum autoencoders and quantum adders, which approximately add two unknown quantum states supported in different quantum systems. Specifically, this link allows us to employ optimized approximate quantum adders, obtained with genetic algorithms, for the implementation of quantum autoencoders for a variety of initial states. Furthermore, we can also directly optimize the quantum autoencoders via genetic algorithms. Our approach opens a different path for the design of quantum autoencoders in controllable quantum platforms.</description><identifier>ISSN: 2058-9565</identifier><identifier>EISSN: 2058-9565</identifier><identifier>DOI: 10.1088/2058-9565/aae22b</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>genetic algorithms ; quantum adder ; quantum autoencoder ; quantum machine learning</subject><ispartof>Quantum science and technology, 2019-01, Vol.4 (1), p.14007</ispartof><rights>2018 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-e19bdbd93426564a6d9915562955445fe2acc5c6ab9ea627d7af1428f09f18c93</citedby><cites>FETCH-LOGICAL-c353t-e19bdbd93426564a6d9915562955445fe2acc5c6ab9ea627d7af1428f09f18c93</cites><orcidid>0000-0003-1615-9035 ; 0000-0002-9504-8685 ; 0000-0001-9378-0285</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2058-9565/aae22b/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Lamata, L</creatorcontrib><creatorcontrib>Alvarez-Rodriguez, U</creatorcontrib><creatorcontrib>Martín-Guerrero, J D</creatorcontrib><creatorcontrib>Sanz, M</creatorcontrib><creatorcontrib>Solano, E</creatorcontrib><title>Quantum autoencoders via quantum adders with genetic algorithms</title><title>Quantum science and technology</title><addtitle>QST</addtitle><addtitle>Quantum Sci. Technol</addtitle><description>The quantum autoencoder is a recent paradigm in the field of quantum machine learning, which may enable an enhanced use of resources in quantum technologies. To this end, quantum neural networks with less nodes in the inner than in the outer layers were considered. Here, we propose a useful connection between quantum autoencoders and quantum adders, which approximately add two unknown quantum states supported in different quantum systems. Specifically, this link allows us to employ optimized approximate quantum adders, obtained with genetic algorithms, for the implementation of quantum autoencoders for a variety of initial states. Furthermore, we can also directly optimize the quantum autoencoders via genetic algorithms. Our approach opens a different path for the design of quantum autoencoders in controllable quantum platforms.</description><subject>genetic algorithms</subject><subject>quantum adder</subject><subject>quantum autoencoder</subject><subject>quantum machine learning</subject><issn>2058-9565</issn><issn>2058-9565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UE1Lw0AUXETBUnv3mJMnY99-NnsSKX5BQQQ9Ly_7UVPapN1NFP-9iVXxIJ7eY97MY2YIOaVwQaEopgxkkWup5BTRM1YekNEPdPhrPyaTlFYAwBmlGtSIXD52WLfdJsOubXxtG-djyl4rzHbfB_cJvVXtS7b0tW8rm-F62cQe2KQTchRwnfzka47J88310_wuXzzc3s-vFrnlkre5p7p0pdNcMCWVQOW0plIqpqUUQgbP0FppFZbao2IzN8NABSsC6EALq_mYwP6vjU1K0QezjdUG47uhYIYOzBDSDCHNvoNecr6XVM3WrJou1r3B_-hnf9B3qTXCUANUAMzM1gX-AYM3azk</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Lamata, L</creator><creator>Alvarez-Rodriguez, U</creator><creator>Martín-Guerrero, J D</creator><creator>Sanz, M</creator><creator>Solano, E</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1615-9035</orcidid><orcidid>https://orcid.org/0000-0002-9504-8685</orcidid><orcidid>https://orcid.org/0000-0001-9378-0285</orcidid></search><sort><creationdate>20190101</creationdate><title>Quantum autoencoders via quantum adders with genetic algorithms</title><author>Lamata, L ; Alvarez-Rodriguez, U ; Martín-Guerrero, J D ; Sanz, M ; Solano, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-e19bdbd93426564a6d9915562955445fe2acc5c6ab9ea627d7af1428f09f18c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>genetic algorithms</topic><topic>quantum adder</topic><topic>quantum autoencoder</topic><topic>quantum machine learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lamata, L</creatorcontrib><creatorcontrib>Alvarez-Rodriguez, U</creatorcontrib><creatorcontrib>Martín-Guerrero, J D</creatorcontrib><creatorcontrib>Sanz, M</creatorcontrib><creatorcontrib>Solano, E</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lamata, L</au><au>Alvarez-Rodriguez, U</au><au>Martín-Guerrero, J D</au><au>Sanz, M</au><au>Solano, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum autoencoders via quantum adders with genetic algorithms</atitle><jtitle>Quantum science and technology</jtitle><stitle>QST</stitle><addtitle>Quantum Sci. Technol</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>4</volume><issue>1</issue><spage>14007</spage><pages>14007-</pages><issn>2058-9565</issn><eissn>2058-9565</eissn><abstract>The quantum autoencoder is a recent paradigm in the field of quantum machine learning, which may enable an enhanced use of resources in quantum technologies. To this end, quantum neural networks with less nodes in the inner than in the outer layers were considered. Here, we propose a useful connection between quantum autoencoders and quantum adders, which approximately add two unknown quantum states supported in different quantum systems. Specifically, this link allows us to employ optimized approximate quantum adders, obtained with genetic algorithms, for the implementation of quantum autoencoders for a variety of initial states. Furthermore, we can also directly optimize the quantum autoencoders via genetic algorithms. Our approach opens a different path for the design of quantum autoencoders in controllable quantum platforms.</abstract><pub>IOP Publishing</pub><doi>10.1088/2058-9565/aae22b</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1615-9035</orcidid><orcidid>https://orcid.org/0000-0002-9504-8685</orcidid><orcidid>https://orcid.org/0000-0001-9378-0285</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2058-9565
ispartof Quantum science and technology, 2019-01, Vol.4 (1), p.14007
issn 2058-9565
2058-9565
language eng
recordid cdi_crossref_primary_10_1088_2058_9565_aae22b
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects genetic algorithms
quantum adder
quantum autoencoder
quantum machine learning
title Quantum autoencoders via quantum adders with genetic algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A50%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20autoencoders%20via%20quantum%20adders%20with%20genetic%20algorithms&rft.jtitle=Quantum%20science%20and%20technology&rft.au=Lamata,%20L&rft.date=2019-01-01&rft.volume=4&rft.issue=1&rft.spage=14007&rft.pages=14007-&rft.issn=2058-9565&rft.eissn=2058-9565&rft_id=info:doi/10.1088/2058-9565/aae22b&rft_dat=%3Ciop_cross%3Eqstaae22b%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true