Quantum simulation of transverse Ising models with Rydberg atoms
Quantum Ising models are canonical models for the study of quantum phase transitions (Sachdev 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)) and are the underlying concept for many analogue quantum computing and quantum annealing ideas (Tanaka et al Quantum Spin Glasses, Ann...
Gespeichert in:
Veröffentlicht in: | Quantum science and technology 2018-04, Vol.3 (2), p.23001 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 23001 |
container_title | Quantum science and technology |
container_volume | 3 |
creator | Schauss, Peter |
description | Quantum Ising models are canonical models for the study of quantum phase transitions (Sachdev 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)) and are the underlying concept for many analogue quantum computing and quantum annealing ideas (Tanaka et al Quantum Spin Glasses, Annealing and Computation (Cambridge: Cambridge University Press)). Here we focus on the implementation of finite-range interacting Ising spin models, which are barely tractable numerically. Recent experiments with cold atoms have reached the interaction-dominated regime in quantum Ising magnets via optical coupling of trapped neutral atoms to Rydberg states. This approach allows for the tunability of all relevant terms in an Ising spin Hamiltonian with 1 r 6 interactions in transverse and longitudinal fields. This review summarizes the recent progress of these implementations in Rydberg lattices with site-resolved detection. Strong correlations in quantum Ising models have been observed in several experiments, starting from a single excitation in the superatom regime up to the point of crystallization. The rapid progress in this field makes spin systems based on Rydberg atoms a promising platform for quantum simulation because of the unmatched flexibility and strength of interactions combined with high control and good isolation from the environment. |
doi_str_mv | 10.1088/2058-9565/aa9c59 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2058_9565_aa9c59</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>qstaa9c59</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-f16d67e9c3c2b7e236ddb7d70f9228736bfd1154798313a14a8dbd7bc5cf50e93</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWGr3LvMDHJtH89opRW2hIIquQyaPmjIzKcmM0n9vy4i4cXUPl_Nd7jkAXGN0i5GUc4KYrBTjbG6Mskydgcnv6vyPvgSzUnYIIUowVohPwN3LYLp-aGGJ7dCYPqYOpgD7bLry6XPxcF1it4Vtcr4p8Cv2H_D14Gqft9D0qS1X4CKYpvjZz5yC98eHt-Wq2jw_rZf3m8oSifoqYO648MpSS2rhCeXO1cIJFBQhUlBeB4cxWwglKaYGL4x0tRO1ZTYw5BWdAjTetTmVkn3Q-xxbkw8aI30qQZ9S6lNKPZZwRG5GJKa93qUhd8cH_7d_A5XDXjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantum simulation of transverse Ising models with Rydberg atoms</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Schauss, Peter</creator><creatorcontrib>Schauss, Peter</creatorcontrib><description>Quantum Ising models are canonical models for the study of quantum phase transitions (Sachdev 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)) and are the underlying concept for many analogue quantum computing and quantum annealing ideas (Tanaka et al Quantum Spin Glasses, Annealing and Computation (Cambridge: Cambridge University Press)). Here we focus on the implementation of finite-range interacting Ising spin models, which are barely tractable numerically. Recent experiments with cold atoms have reached the interaction-dominated regime in quantum Ising magnets via optical coupling of trapped neutral atoms to Rydberg states. This approach allows for the tunability of all relevant terms in an Ising spin Hamiltonian with 1 r 6 interactions in transverse and longitudinal fields. This review summarizes the recent progress of these implementations in Rydberg lattices with site-resolved detection. Strong correlations in quantum Ising models have been observed in several experiments, starting from a single excitation in the superatom regime up to the point of crystallization. The rapid progress in this field makes spin systems based on Rydberg atoms a promising platform for quantum simulation because of the unmatched flexibility and strength of interactions combined with high control and good isolation from the environment.</description><identifier>ISSN: 2058-9565</identifier><identifier>EISSN: 2058-9565</identifier><identifier>DOI: 10.1088/2058-9565/aa9c59</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>quantum Ising model ; quantum simulation ; Rydberg atom ; transverse Ising model ; ultracold atoms</subject><ispartof>Quantum science and technology, 2018-04, Vol.3 (2), p.23001</ispartof><rights>2018 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-f16d67e9c3c2b7e236ddb7d70f9228736bfd1154798313a14a8dbd7bc5cf50e93</citedby><cites>FETCH-LOGICAL-c280t-f16d67e9c3c2b7e236ddb7d70f9228736bfd1154798313a14a8dbd7bc5cf50e93</cites><orcidid>0000-0002-8505-5195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2058-9565/aa9c59/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Schauss, Peter</creatorcontrib><title>Quantum simulation of transverse Ising models with Rydberg atoms</title><title>Quantum science and technology</title><addtitle>QST</addtitle><addtitle>Quantum Sci. Technol</addtitle><description>Quantum Ising models are canonical models for the study of quantum phase transitions (Sachdev 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)) and are the underlying concept for many analogue quantum computing and quantum annealing ideas (Tanaka et al Quantum Spin Glasses, Annealing and Computation (Cambridge: Cambridge University Press)). Here we focus on the implementation of finite-range interacting Ising spin models, which are barely tractable numerically. Recent experiments with cold atoms have reached the interaction-dominated regime in quantum Ising magnets via optical coupling of trapped neutral atoms to Rydberg states. This approach allows for the tunability of all relevant terms in an Ising spin Hamiltonian with 1 r 6 interactions in transverse and longitudinal fields. This review summarizes the recent progress of these implementations in Rydberg lattices with site-resolved detection. Strong correlations in quantum Ising models have been observed in several experiments, starting from a single excitation in the superatom regime up to the point of crystallization. The rapid progress in this field makes spin systems based on Rydberg atoms a promising platform for quantum simulation because of the unmatched flexibility and strength of interactions combined with high control and good isolation from the environment.</description><subject>quantum Ising model</subject><subject>quantum simulation</subject><subject>Rydberg atom</subject><subject>transverse Ising model</subject><subject>ultracold atoms</subject><issn>2058-9565</issn><issn>2058-9565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWGr3LvMDHJtH89opRW2hIIquQyaPmjIzKcmM0n9vy4i4cXUPl_Nd7jkAXGN0i5GUc4KYrBTjbG6Mskydgcnv6vyPvgSzUnYIIUowVohPwN3LYLp-aGGJ7dCYPqYOpgD7bLry6XPxcF1it4Vtcr4p8Cv2H_D14Gqft9D0qS1X4CKYpvjZz5yC98eHt-Wq2jw_rZf3m8oSifoqYO648MpSS2rhCeXO1cIJFBQhUlBeB4cxWwglKaYGL4x0tRO1ZTYw5BWdAjTetTmVkn3Q-xxbkw8aI30qQZ9S6lNKPZZwRG5GJKa93qUhd8cH_7d_A5XDXjA</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Schauss, Peter</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8505-5195</orcidid></search><sort><creationdate>20180401</creationdate><title>Quantum simulation of transverse Ising models with Rydberg atoms</title><author>Schauss, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-f16d67e9c3c2b7e236ddb7d70f9228736bfd1154798313a14a8dbd7bc5cf50e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>quantum Ising model</topic><topic>quantum simulation</topic><topic>Rydberg atom</topic><topic>transverse Ising model</topic><topic>ultracold atoms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schauss, Peter</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schauss, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum simulation of transverse Ising models with Rydberg atoms</atitle><jtitle>Quantum science and technology</jtitle><stitle>QST</stitle><addtitle>Quantum Sci. Technol</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>3</volume><issue>2</issue><spage>23001</spage><pages>23001-</pages><issn>2058-9565</issn><eissn>2058-9565</eissn><abstract>Quantum Ising models are canonical models for the study of quantum phase transitions (Sachdev 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)) and are the underlying concept for many analogue quantum computing and quantum annealing ideas (Tanaka et al Quantum Spin Glasses, Annealing and Computation (Cambridge: Cambridge University Press)). Here we focus on the implementation of finite-range interacting Ising spin models, which are barely tractable numerically. Recent experiments with cold atoms have reached the interaction-dominated regime in quantum Ising magnets via optical coupling of trapped neutral atoms to Rydberg states. This approach allows for the tunability of all relevant terms in an Ising spin Hamiltonian with 1 r 6 interactions in transverse and longitudinal fields. This review summarizes the recent progress of these implementations in Rydberg lattices with site-resolved detection. Strong correlations in quantum Ising models have been observed in several experiments, starting from a single excitation in the superatom regime up to the point of crystallization. The rapid progress in this field makes spin systems based on Rydberg atoms a promising platform for quantum simulation because of the unmatched flexibility and strength of interactions combined with high control and good isolation from the environment.</abstract><pub>IOP Publishing</pub><doi>10.1088/2058-9565/aa9c59</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-8505-5195</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2058-9565 |
ispartof | Quantum science and technology, 2018-04, Vol.3 (2), p.23001 |
issn | 2058-9565 2058-9565 |
language | eng |
recordid | cdi_crossref_primary_10_1088_2058_9565_aa9c59 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | quantum Ising model quantum simulation Rydberg atom transverse Ising model ultracold atoms |
title | Quantum simulation of transverse Ising models with Rydberg atoms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A09%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20simulation%20of%20transverse%20Ising%20models%20with%20Rydberg%20atoms&rft.jtitle=Quantum%20science%20and%20technology&rft.au=Schauss,%20Peter&rft.date=2018-04-01&rft.volume=3&rft.issue=2&rft.spage=23001&rft.pages=23001-&rft.issn=2058-9565&rft.eissn=2058-9565&rft_id=info:doi/10.1088/2058-9565/aa9c59&rft_dat=%3Ciop_cross%3Eqstaa9c59%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |