Quantum simulation of transverse Ising models with Rydberg atoms

Quantum Ising models are canonical models for the study of quantum phase transitions (Sachdev 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)) and are the underlying concept for many analogue quantum computing and quantum annealing ideas (Tanaka et al Quantum Spin Glasses, Ann...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum science and technology 2018-04, Vol.3 (2), p.23001
1. Verfasser: Schauss, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 23001
container_title Quantum science and technology
container_volume 3
creator Schauss, Peter
description Quantum Ising models are canonical models for the study of quantum phase transitions (Sachdev 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)) and are the underlying concept for many analogue quantum computing and quantum annealing ideas (Tanaka et al Quantum Spin Glasses, Annealing and Computation (Cambridge: Cambridge University Press)). Here we focus on the implementation of finite-range interacting Ising spin models, which are barely tractable numerically. Recent experiments with cold atoms have reached the interaction-dominated regime in quantum Ising magnets via optical coupling of trapped neutral atoms to Rydberg states. This approach allows for the tunability of all relevant terms in an Ising spin Hamiltonian with 1 r 6 interactions in transverse and longitudinal fields. This review summarizes the recent progress of these implementations in Rydberg lattices with site-resolved detection. Strong correlations in quantum Ising models have been observed in several experiments, starting from a single excitation in the superatom regime up to the point of crystallization. The rapid progress in this field makes spin systems based on Rydberg atoms a promising platform for quantum simulation because of the unmatched flexibility and strength of interactions combined with high control and good isolation from the environment.
doi_str_mv 10.1088/2058-9565/aa9c59
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2058_9565_aa9c59</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>qstaa9c59</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-f16d67e9c3c2b7e236ddb7d70f9228736bfd1154798313a14a8dbd7bc5cf50e93</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWGr3LvMDHJtH89opRW2hIIquQyaPmjIzKcmM0n9vy4i4cXUPl_Nd7jkAXGN0i5GUc4KYrBTjbG6Mskydgcnv6vyPvgSzUnYIIUowVohPwN3LYLp-aGGJ7dCYPqYOpgD7bLry6XPxcF1it4Vtcr4p8Cv2H_D14Gqft9D0qS1X4CKYpvjZz5yC98eHt-Wq2jw_rZf3m8oSifoqYO648MpSS2rhCeXO1cIJFBQhUlBeB4cxWwglKaYGL4x0tRO1ZTYw5BWdAjTetTmVkn3Q-xxbkw8aI30qQZ9S6lNKPZZwRG5GJKa93qUhd8cH_7d_A5XDXjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantum simulation of transverse Ising models with Rydberg atoms</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Schauss, Peter</creator><creatorcontrib>Schauss, Peter</creatorcontrib><description>Quantum Ising models are canonical models for the study of quantum phase transitions (Sachdev 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)) and are the underlying concept for many analogue quantum computing and quantum annealing ideas (Tanaka et al Quantum Spin Glasses, Annealing and Computation (Cambridge: Cambridge University Press)). Here we focus on the implementation of finite-range interacting Ising spin models, which are barely tractable numerically. Recent experiments with cold atoms have reached the interaction-dominated regime in quantum Ising magnets via optical coupling of trapped neutral atoms to Rydberg states. This approach allows for the tunability of all relevant terms in an Ising spin Hamiltonian with 1 r 6 interactions in transverse and longitudinal fields. This review summarizes the recent progress of these implementations in Rydberg lattices with site-resolved detection. Strong correlations in quantum Ising models have been observed in several experiments, starting from a single excitation in the superatom regime up to the point of crystallization. The rapid progress in this field makes spin systems based on Rydberg atoms a promising platform for quantum simulation because of the unmatched flexibility and strength of interactions combined with high control and good isolation from the environment.</description><identifier>ISSN: 2058-9565</identifier><identifier>EISSN: 2058-9565</identifier><identifier>DOI: 10.1088/2058-9565/aa9c59</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>quantum Ising model ; quantum simulation ; Rydberg atom ; transverse Ising model ; ultracold atoms</subject><ispartof>Quantum science and technology, 2018-04, Vol.3 (2), p.23001</ispartof><rights>2018 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-f16d67e9c3c2b7e236ddb7d70f9228736bfd1154798313a14a8dbd7bc5cf50e93</citedby><cites>FETCH-LOGICAL-c280t-f16d67e9c3c2b7e236ddb7d70f9228736bfd1154798313a14a8dbd7bc5cf50e93</cites><orcidid>0000-0002-8505-5195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2058-9565/aa9c59/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Schauss, Peter</creatorcontrib><title>Quantum simulation of transverse Ising models with Rydberg atoms</title><title>Quantum science and technology</title><addtitle>QST</addtitle><addtitle>Quantum Sci. Technol</addtitle><description>Quantum Ising models are canonical models for the study of quantum phase transitions (Sachdev 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)) and are the underlying concept for many analogue quantum computing and quantum annealing ideas (Tanaka et al Quantum Spin Glasses, Annealing and Computation (Cambridge: Cambridge University Press)). Here we focus on the implementation of finite-range interacting Ising spin models, which are barely tractable numerically. Recent experiments with cold atoms have reached the interaction-dominated regime in quantum Ising magnets via optical coupling of trapped neutral atoms to Rydberg states. This approach allows for the tunability of all relevant terms in an Ising spin Hamiltonian with 1 r 6 interactions in transverse and longitudinal fields. This review summarizes the recent progress of these implementations in Rydberg lattices with site-resolved detection. Strong correlations in quantum Ising models have been observed in several experiments, starting from a single excitation in the superatom regime up to the point of crystallization. The rapid progress in this field makes spin systems based on Rydberg atoms a promising platform for quantum simulation because of the unmatched flexibility and strength of interactions combined with high control and good isolation from the environment.</description><subject>quantum Ising model</subject><subject>quantum simulation</subject><subject>Rydberg atom</subject><subject>transverse Ising model</subject><subject>ultracold atoms</subject><issn>2058-9565</issn><issn>2058-9565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWGr3LvMDHJtH89opRW2hIIquQyaPmjIzKcmM0n9vy4i4cXUPl_Nd7jkAXGN0i5GUc4KYrBTjbG6Mskydgcnv6vyPvgSzUnYIIUowVohPwN3LYLp-aGGJ7dCYPqYOpgD7bLry6XPxcF1it4Vtcr4p8Cv2H_D14Gqft9D0qS1X4CKYpvjZz5yC98eHt-Wq2jw_rZf3m8oSifoqYO648MpSS2rhCeXO1cIJFBQhUlBeB4cxWwglKaYGL4x0tRO1ZTYw5BWdAjTetTmVkn3Q-xxbkw8aI30qQZ9S6lNKPZZwRG5GJKa93qUhd8cH_7d_A5XDXjA</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Schauss, Peter</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8505-5195</orcidid></search><sort><creationdate>20180401</creationdate><title>Quantum simulation of transverse Ising models with Rydberg atoms</title><author>Schauss, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-f16d67e9c3c2b7e236ddb7d70f9228736bfd1154798313a14a8dbd7bc5cf50e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>quantum Ising model</topic><topic>quantum simulation</topic><topic>Rydberg atom</topic><topic>transverse Ising model</topic><topic>ultracold atoms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schauss, Peter</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schauss, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum simulation of transverse Ising models with Rydberg atoms</atitle><jtitle>Quantum science and technology</jtitle><stitle>QST</stitle><addtitle>Quantum Sci. Technol</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>3</volume><issue>2</issue><spage>23001</spage><pages>23001-</pages><issn>2058-9565</issn><eissn>2058-9565</eissn><abstract>Quantum Ising models are canonical models for the study of quantum phase transitions (Sachdev 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)) and are the underlying concept for many analogue quantum computing and quantum annealing ideas (Tanaka et al Quantum Spin Glasses, Annealing and Computation (Cambridge: Cambridge University Press)). Here we focus on the implementation of finite-range interacting Ising spin models, which are barely tractable numerically. Recent experiments with cold atoms have reached the interaction-dominated regime in quantum Ising magnets via optical coupling of trapped neutral atoms to Rydberg states. This approach allows for the tunability of all relevant terms in an Ising spin Hamiltonian with 1 r 6 interactions in transverse and longitudinal fields. This review summarizes the recent progress of these implementations in Rydberg lattices with site-resolved detection. Strong correlations in quantum Ising models have been observed in several experiments, starting from a single excitation in the superatom regime up to the point of crystallization. The rapid progress in this field makes spin systems based on Rydberg atoms a promising platform for quantum simulation because of the unmatched flexibility and strength of interactions combined with high control and good isolation from the environment.</abstract><pub>IOP Publishing</pub><doi>10.1088/2058-9565/aa9c59</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-8505-5195</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2058-9565
ispartof Quantum science and technology, 2018-04, Vol.3 (2), p.23001
issn 2058-9565
2058-9565
language eng
recordid cdi_crossref_primary_10_1088_2058_9565_aa9c59
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects quantum Ising model
quantum simulation
Rydberg atom
transverse Ising model
ultracold atoms
title Quantum simulation of transverse Ising models with Rydberg atoms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A09%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20simulation%20of%20transverse%20Ising%20models%20with%20Rydberg%20atoms&rft.jtitle=Quantum%20science%20and%20technology&rft.au=Schauss,%20Peter&rft.date=2018-04-01&rft.volume=3&rft.issue=2&rft.spage=23001&rft.pages=23001-&rft.issn=2058-9565&rft.eissn=2058-9565&rft_id=info:doi/10.1088/2058-9565/aa9c59&rft_dat=%3Ciop_cross%3Eqstaa9c59%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true