A fully printed sensor with optical readout for real-time flow monitoring
In recent years, there has been a growing interest in the development of flexible thermal flow sensing devices due to their wide-ranging applications. In this study, we present the fabrication of a screen-printed flow sensor with optical readout on a 125 μ m polyethylene terephthalate substrate in a...
Gespeichert in:
Veröffentlicht in: | Flexible and printed electronics 2023-12, Vol.8 (4), p.45011 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 45011 |
container_title | Flexible and printed electronics |
container_volume | 8 |
creator | Barmpakos, Dimitris Apostolakis, Apostolos Pilatis, Aggelos Pagonis, Dimitrios-Nikolaos Kaltsas, Grigoris |
description | In recent years, there has been a growing interest in the development of flexible thermal flow sensing devices due to their wide-ranging applications. In this study, we present the fabrication of a screen-printed flow sensor with optical readout on a 125
μ
m polyethylene terephthalate substrate in a three-layer configuration. The device comprises electrodes made from a commercial silver (Ag) ink, a heating area using a commercial carbon ink, and a thermochromic (TC) layer employing a commercial ink with a standard activation temperature of 31 °C. We designed a specialized experimental setup to evaluate the performance of the optical flow sensor under static and dynamic conditions. To analyze the device’s thermal response and performance across various flow conditions, we utilized a combination of electrical measurements and infrared (IR)-optical imaging techniques. The all-printed device operates on the basis of a thermodynamic cycle frequency, which activates the TC ink, causing it to blink at a frequency related to the flow passing over the sensor. The results of our preliminary testing are highly promising, as the sensor successfully demonstrated a clear relationship between flow and optical duty cycle. This innovative device offers a contactless, low-cost, easy-to-use flow detection method and holds significant potential for various practical applications. |
doi_str_mv | 10.1088/2058-8585/ad16ed |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2058_8585_ad16ed</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>fpead16ed</sourcerecordid><originalsourceid>FETCH-LOGICAL-c236t-8ec20af3aac01e77c358b7044500947786e376947f9ed6fd20338a01f81d2bf23</originalsourceid><addsrcrecordid>eNp1UD1PwzAQtRBIVKU7oycmQs9xEjtjVfFRqRILzJYb2-AqiSPbUdV_j6MgxADTPd29d_feIXRL4IEA5-scSp7xkpdrqUil1QVa_LQuf-FrtArhCACkrhnlsEC7DTZj257x4G0ftcJB98F5fLLxE7sh2ka22Gup3BixSYOE2yzaTmPTuhPuXG-jS9qPG3RlZBv06rsu0fvT49v2Jdu_Pu-2m33W5LSKGddNDtJQKRsgmrGGlvzAoChKgLpgjFeasiohU2tVGZUDpVwCMZyo_GByukQw7228C8FrI5L1TvqzICCmb4gprpjiivkbSXI3S6wbxNGNvk8GhRm04KIQkE4TIgZlEvH-D-K_e78AC1ZuFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A fully printed sensor with optical readout for real-time flow monitoring</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Barmpakos, Dimitris ; Apostolakis, Apostolos ; Pilatis, Aggelos ; Pagonis, Dimitrios-Nikolaos ; Kaltsas, Grigoris</creator><creatorcontrib>Barmpakos, Dimitris ; Apostolakis, Apostolos ; Pilatis, Aggelos ; Pagonis, Dimitrios-Nikolaos ; Kaltsas, Grigoris</creatorcontrib><description>In recent years, there has been a growing interest in the development of flexible thermal flow sensing devices due to their wide-ranging applications. In this study, we present the fabrication of a screen-printed flow sensor with optical readout on a 125
μ
m polyethylene terephthalate substrate in a three-layer configuration. The device comprises electrodes made from a commercial silver (Ag) ink, a heating area using a commercial carbon ink, and a thermochromic (TC) layer employing a commercial ink with a standard activation temperature of 31 °C. We designed a specialized experimental setup to evaluate the performance of the optical flow sensor under static and dynamic conditions. To analyze the device’s thermal response and performance across various flow conditions, we utilized a combination of electrical measurements and infrared (IR)-optical imaging techniques. The all-printed device operates on the basis of a thermodynamic cycle frequency, which activates the TC ink, causing it to blink at a frequency related to the flow passing over the sensor. The results of our preliminary testing are highly promising, as the sensor successfully demonstrated a clear relationship between flow and optical duty cycle. This innovative device offers a contactless, low-cost, easy-to-use flow detection method and holds significant potential for various practical applications.</description><identifier>ISSN: 2058-8585</identifier><identifier>EISSN: 2058-8585</identifier><identifier>DOI: 10.1088/2058-8585/ad16ed</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>flexible electronics ; flow sensor ; screen printing ; thermochromic ink</subject><ispartof>Flexible and printed electronics, 2023-12, Vol.8 (4), p.45011</ispartof><rights>2023 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c236t-8ec20af3aac01e77c358b7044500947786e376947f9ed6fd20338a01f81d2bf23</cites><orcidid>0000-0001-7696-7304 ; 0000-0003-4462-5398 ; 0000-0003-4654-8728</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2058-8585/ad16ed/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Barmpakos, Dimitris</creatorcontrib><creatorcontrib>Apostolakis, Apostolos</creatorcontrib><creatorcontrib>Pilatis, Aggelos</creatorcontrib><creatorcontrib>Pagonis, Dimitrios-Nikolaos</creatorcontrib><creatorcontrib>Kaltsas, Grigoris</creatorcontrib><title>A fully printed sensor with optical readout for real-time flow monitoring</title><title>Flexible and printed electronics</title><addtitle>FPE</addtitle><addtitle>Flex. Print. Electron</addtitle><description>In recent years, there has been a growing interest in the development of flexible thermal flow sensing devices due to their wide-ranging applications. In this study, we present the fabrication of a screen-printed flow sensor with optical readout on a 125
μ
m polyethylene terephthalate substrate in a three-layer configuration. The device comprises electrodes made from a commercial silver (Ag) ink, a heating area using a commercial carbon ink, and a thermochromic (TC) layer employing a commercial ink with a standard activation temperature of 31 °C. We designed a specialized experimental setup to evaluate the performance of the optical flow sensor under static and dynamic conditions. To analyze the device’s thermal response and performance across various flow conditions, we utilized a combination of electrical measurements and infrared (IR)-optical imaging techniques. The all-printed device operates on the basis of a thermodynamic cycle frequency, which activates the TC ink, causing it to blink at a frequency related to the flow passing over the sensor. The results of our preliminary testing are highly promising, as the sensor successfully demonstrated a clear relationship between flow and optical duty cycle. This innovative device offers a contactless, low-cost, easy-to-use flow detection method and holds significant potential for various practical applications.</description><subject>flexible electronics</subject><subject>flow sensor</subject><subject>screen printing</subject><subject>thermochromic ink</subject><issn>2058-8585</issn><issn>2058-8585</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1UD1PwzAQtRBIVKU7oycmQs9xEjtjVfFRqRILzJYb2-AqiSPbUdV_j6MgxADTPd29d_feIXRL4IEA5-scSp7xkpdrqUil1QVa_LQuf-FrtArhCACkrhnlsEC7DTZj257x4G0ftcJB98F5fLLxE7sh2ka22Gup3BixSYOE2yzaTmPTuhPuXG-jS9qPG3RlZBv06rsu0fvT49v2Jdu_Pu-2m33W5LSKGddNDtJQKRsgmrGGlvzAoChKgLpgjFeasiohU2tVGZUDpVwCMZyo_GByukQw7228C8FrI5L1TvqzICCmb4gprpjiivkbSXI3S6wbxNGNvk8GhRm04KIQkE4TIgZlEvH-D-K_e78AC1ZuFQ</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Barmpakos, Dimitris</creator><creator>Apostolakis, Apostolos</creator><creator>Pilatis, Aggelos</creator><creator>Pagonis, Dimitrios-Nikolaos</creator><creator>Kaltsas, Grigoris</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7696-7304</orcidid><orcidid>https://orcid.org/0000-0003-4462-5398</orcidid><orcidid>https://orcid.org/0000-0003-4654-8728</orcidid></search><sort><creationdate>20231201</creationdate><title>A fully printed sensor with optical readout for real-time flow monitoring</title><author>Barmpakos, Dimitris ; Apostolakis, Apostolos ; Pilatis, Aggelos ; Pagonis, Dimitrios-Nikolaos ; Kaltsas, Grigoris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c236t-8ec20af3aac01e77c358b7044500947786e376947f9ed6fd20338a01f81d2bf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>flexible electronics</topic><topic>flow sensor</topic><topic>screen printing</topic><topic>thermochromic ink</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barmpakos, Dimitris</creatorcontrib><creatorcontrib>Apostolakis, Apostolos</creatorcontrib><creatorcontrib>Pilatis, Aggelos</creatorcontrib><creatorcontrib>Pagonis, Dimitrios-Nikolaos</creatorcontrib><creatorcontrib>Kaltsas, Grigoris</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Flexible and printed electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barmpakos, Dimitris</au><au>Apostolakis, Apostolos</au><au>Pilatis, Aggelos</au><au>Pagonis, Dimitrios-Nikolaos</au><au>Kaltsas, Grigoris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fully printed sensor with optical readout for real-time flow monitoring</atitle><jtitle>Flexible and printed electronics</jtitle><stitle>FPE</stitle><addtitle>Flex. Print. Electron</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>8</volume><issue>4</issue><spage>45011</spage><pages>45011-</pages><issn>2058-8585</issn><eissn>2058-8585</eissn><abstract>In recent years, there has been a growing interest in the development of flexible thermal flow sensing devices due to their wide-ranging applications. In this study, we present the fabrication of a screen-printed flow sensor with optical readout on a 125
μ
m polyethylene terephthalate substrate in a three-layer configuration. The device comprises electrodes made from a commercial silver (Ag) ink, a heating area using a commercial carbon ink, and a thermochromic (TC) layer employing a commercial ink with a standard activation temperature of 31 °C. We designed a specialized experimental setup to evaluate the performance of the optical flow sensor under static and dynamic conditions. To analyze the device’s thermal response and performance across various flow conditions, we utilized a combination of electrical measurements and infrared (IR)-optical imaging techniques. The all-printed device operates on the basis of a thermodynamic cycle frequency, which activates the TC ink, causing it to blink at a frequency related to the flow passing over the sensor. The results of our preliminary testing are highly promising, as the sensor successfully demonstrated a clear relationship between flow and optical duty cycle. This innovative device offers a contactless, low-cost, easy-to-use flow detection method and holds significant potential for various practical applications.</abstract><pub>IOP Publishing</pub><doi>10.1088/2058-8585/ad16ed</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7696-7304</orcidid><orcidid>https://orcid.org/0000-0003-4462-5398</orcidid><orcidid>https://orcid.org/0000-0003-4654-8728</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2058-8585 |
ispartof | Flexible and printed electronics, 2023-12, Vol.8 (4), p.45011 |
issn | 2058-8585 2058-8585 |
language | eng |
recordid | cdi_crossref_primary_10_1088_2058_8585_ad16ed |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | flexible electronics flow sensor screen printing thermochromic ink |
title | A fully printed sensor with optical readout for real-time flow monitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A16%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fully%20printed%20sensor%20with%20optical%20readout%20for%20real-time%20flow%20monitoring&rft.jtitle=Flexible%20and%20printed%20electronics&rft.au=Barmpakos,%20Dimitris&rft.date=2023-12-01&rft.volume=8&rft.issue=4&rft.spage=45011&rft.pages=45011-&rft.issn=2058-8585&rft.eissn=2058-8585&rft_id=info:doi/10.1088/2058-8585/ad16ed&rft_dat=%3Ciop_cross%3Efpead16ed%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |