Developing clinical grade flexible implantable electronics

Implantable electronic sensors and systems are utilised in an increasingly broad array of clinical applications, such as pacemakers, neuro-modulators and bioelectronic vagal nerve controllers. Advances in microelectronics, materials, and bio-interfaces allow for new clinical applications and support...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Flexible and printed electronics 2023-03, Vol.8 (1), p.13002
Hauptverfasser: Liu, Yu, Balsamo, Domenico, Degenaar, Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 13002
container_title Flexible and printed electronics
container_volume 8
creator Liu, Yu
Balsamo, Domenico
Degenaar, Patrick
description Implantable electronic sensors and systems are utilised in an increasingly broad array of clinical applications, such as pacemakers, neuro-modulators and bioelectronic vagal nerve controllers. Advances in microelectronics, materials, and bio-interfaces allow for new clinical applications and support fundamental research. However, a longstanding issue with such devices has been the mismatch between the relative stiffness of such structures compared to tissue softness. This disparity has led to tissue rejection in the form of scar tissue around implantable probes, leading to loss of function and/or capability. This review, therefore, explores the field of implantable electronics and neuroprosthetics with a particular focus on developments in soft, flexible devices. We include advancements in materials and device topologies as well as the current understanding of their long-term efficacy in biological tissue.
doi_str_mv 10.1088/2058-8585/aca779
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2058_8585_aca779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>fpeaca779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-1d2ebc6ba49164e3974e2663edb80e4ea921f69a2cb753d119f7ff1fc16e29333</originalsourceid><addsrcrecordid>eNp1j0tLxDAUhYMoOIyzd9kfYJ082jzcyfiEATe6DrfpzZAh05akiv57p1TEjat7uJxzOB8hl4xeM6r1mtNal7rW9RocKGVOyOL3dfpHn5NVzntKKTNGCU0X5OYOPzD2Q-h2hYuhCw5isUvQYuEjfoYmYhEOQ4RuhEljRDem_ujLF-TMQ8y4-rlL8vZw_7p5Krcvj8-b223pBOdjyVqOjZMNVIbJCoVRFXIpBbaNplghGM68NMBdo2rRMma88p55xyRyI4RYEjr3utTnnNDbIYUDpC_LqJ3w7cRnJz474x8jV3Mk9IPd9--pOw783_4NEzNcFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Developing clinical grade flexible implantable electronics</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Liu, Yu ; Balsamo, Domenico ; Degenaar, Patrick</creator><creatorcontrib>Liu, Yu ; Balsamo, Domenico ; Degenaar, Patrick</creatorcontrib><description>Implantable electronic sensors and systems are utilised in an increasingly broad array of clinical applications, such as pacemakers, neuro-modulators and bioelectronic vagal nerve controllers. Advances in microelectronics, materials, and bio-interfaces allow for new clinical applications and support fundamental research. However, a longstanding issue with such devices has been the mismatch between the relative stiffness of such structures compared to tissue softness. This disparity has led to tissue rejection in the form of scar tissue around implantable probes, leading to loss of function and/or capability. This review, therefore, explores the field of implantable electronics and neuroprosthetics with a particular focus on developments in soft, flexible devices. We include advancements in materials and device topologies as well as the current understanding of their long-term efficacy in biological tissue.</description><identifier>ISSN: 2058-8585</identifier><identifier>EISSN: 2058-8585</identifier><identifier>DOI: 10.1088/2058-8585/aca779</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>flexible probe ; neural implant ; neuroprosthesis</subject><ispartof>Flexible and printed electronics, 2023-03, Vol.8 (1), p.13002</ispartof><rights>2023 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-1d2ebc6ba49164e3974e2663edb80e4ea921f69a2cb753d119f7ff1fc16e29333</citedby><cites>FETCH-LOGICAL-c322t-1d2ebc6ba49164e3974e2663edb80e4ea921f69a2cb753d119f7ff1fc16e29333</cites><orcidid>0000-0002-5984-6698 ; 0000-0002-4960-9111</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2058-8585/aca779/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Balsamo, Domenico</creatorcontrib><creatorcontrib>Degenaar, Patrick</creatorcontrib><title>Developing clinical grade flexible implantable electronics</title><title>Flexible and printed electronics</title><addtitle>FPE</addtitle><addtitle>Flex. Print. Electron</addtitle><description>Implantable electronic sensors and systems are utilised in an increasingly broad array of clinical applications, such as pacemakers, neuro-modulators and bioelectronic vagal nerve controllers. Advances in microelectronics, materials, and bio-interfaces allow for new clinical applications and support fundamental research. However, a longstanding issue with such devices has been the mismatch between the relative stiffness of such structures compared to tissue softness. This disparity has led to tissue rejection in the form of scar tissue around implantable probes, leading to loss of function and/or capability. This review, therefore, explores the field of implantable electronics and neuroprosthetics with a particular focus on developments in soft, flexible devices. We include advancements in materials and device topologies as well as the current understanding of their long-term efficacy in biological tissue.</description><subject>flexible probe</subject><subject>neural implant</subject><subject>neuroprosthesis</subject><issn>2058-8585</issn><issn>2058-8585</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1j0tLxDAUhYMoOIyzd9kfYJ082jzcyfiEATe6DrfpzZAh05akiv57p1TEjat7uJxzOB8hl4xeM6r1mtNal7rW9RocKGVOyOL3dfpHn5NVzntKKTNGCU0X5OYOPzD2Q-h2hYuhCw5isUvQYuEjfoYmYhEOQ4RuhEljRDem_ujLF-TMQ8y4-rlL8vZw_7p5Krcvj8-b223pBOdjyVqOjZMNVIbJCoVRFXIpBbaNplghGM68NMBdo2rRMma88p55xyRyI4RYEjr3utTnnNDbIYUDpC_LqJ3w7cRnJz474x8jV3Mk9IPd9--pOw783_4NEzNcFA</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Liu, Yu</creator><creator>Balsamo, Domenico</creator><creator>Degenaar, Patrick</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5984-6698</orcidid><orcidid>https://orcid.org/0000-0002-4960-9111</orcidid></search><sort><creationdate>20230301</creationdate><title>Developing clinical grade flexible implantable electronics</title><author>Liu, Yu ; Balsamo, Domenico ; Degenaar, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-1d2ebc6ba49164e3974e2663edb80e4ea921f69a2cb753d119f7ff1fc16e29333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>flexible probe</topic><topic>neural implant</topic><topic>neuroprosthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Balsamo, Domenico</creatorcontrib><creatorcontrib>Degenaar, Patrick</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Flexible and printed electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yu</au><au>Balsamo, Domenico</au><au>Degenaar, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Developing clinical grade flexible implantable electronics</atitle><jtitle>Flexible and printed electronics</jtitle><stitle>FPE</stitle><addtitle>Flex. Print. Electron</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>8</volume><issue>1</issue><spage>13002</spage><pages>13002-</pages><issn>2058-8585</issn><eissn>2058-8585</eissn><abstract>Implantable electronic sensors and systems are utilised in an increasingly broad array of clinical applications, such as pacemakers, neuro-modulators and bioelectronic vagal nerve controllers. Advances in microelectronics, materials, and bio-interfaces allow for new clinical applications and support fundamental research. However, a longstanding issue with such devices has been the mismatch between the relative stiffness of such structures compared to tissue softness. This disparity has led to tissue rejection in the form of scar tissue around implantable probes, leading to loss of function and/or capability. This review, therefore, explores the field of implantable electronics and neuroprosthetics with a particular focus on developments in soft, flexible devices. We include advancements in materials and device topologies as well as the current understanding of their long-term efficacy in biological tissue.</abstract><pub>IOP Publishing</pub><doi>10.1088/2058-8585/aca779</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-5984-6698</orcidid><orcidid>https://orcid.org/0000-0002-4960-9111</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2058-8585
ispartof Flexible and printed electronics, 2023-03, Vol.8 (1), p.13002
issn 2058-8585
2058-8585
language eng
recordid cdi_crossref_primary_10_1088_2058_8585_aca779
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects flexible probe
neural implant
neuroprosthesis
title Developing clinical grade flexible implantable electronics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A56%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Developing%20clinical%20grade%20flexible%20implantable%20electronics&rft.jtitle=Flexible%20and%20printed%20electronics&rft.au=Liu,%20Yu&rft.date=2023-03-01&rft.volume=8&rft.issue=1&rft.spage=13002&rft.pages=13002-&rft.issn=2058-8585&rft.eissn=2058-8585&rft_id=info:doi/10.1088/2058-8585/aca779&rft_dat=%3Ciop_cross%3Efpeaca779%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true