Quantitative analysis of steel and iron by laser-induced breakdown spectroscopy using GA-KELM

According to the multiple researches in the last couple of years, laser-induced breakdown spectroscopy (LIBS) has shown a great potential for rapid analysis in steel industry. Nevertheless, the accuracy and precision may be limited by complex matrix effect and self-absorption effect of LIBS seriousl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasma science & technology 2019-03, Vol.21 (3), p.34020
Hauptverfasser: MEI, Yaguang, CHENG, Shusen, HAO, Zhongqi, GUO, Lianbo, LI, Xiangyou, ZENG, Xiaoyan, GE, Junliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 34020
container_title Plasma science & technology
container_volume 21
creator MEI, Yaguang
CHENG, Shusen
HAO, Zhongqi
GUO, Lianbo
LI, Xiangyou
ZENG, Xiaoyan
GE, Junliang
description According to the multiple researches in the last couple of years, laser-induced breakdown spectroscopy (LIBS) has shown a great potential for rapid analysis in steel industry. Nevertheless, the accuracy and precision may be limited by complex matrix effect and self-absorption effect of LIBS seriously. A novel multivariate calibration method based on genetic algorithm-kernel extreme learning machine (GA-KELM) is proposed for quantitative analysis of multiple elements (Si, Mn, Cr, Ni, V, Ti, Cu, Mo) in forty-seven certified steel and iron samples. First, the standardized peak intensities of selected spectra lines are used as the input of model. Then, the genetic algorithm is adopted to optimize the model parameters due to its obvious capability in finding the global optimum solution. Based on these two steps above, the kernel method is introduced to create kernel matrix which is used to replace the hidden layer's output matrix. Finally, the least square is applied to calculate the model's output weight. In order to verify the predictive capability of the GA-KELM model, the R-square factor (R2), Root-mean-square Errors of Calibration (RMSEC), Root-mean-square Errors of Prediction (RMSEP) of GA-KELM model are compared with the traditional PLS algorithm, respectively. The results confirm that GA-KELM can reduce the interference from matrix effect and self-absorption effect and is suitable for multi-elements calibration of LIBS.
doi_str_mv 10.1088/2058-6272/aaf6f3
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2058_6272_aaf6f3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pstaaf6f3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-d88dc13c9f56339b0368227aa9b9aadee1c52535ee1488ef581280f64aee73ca3</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqWwM3pjIfRsJ6kzVlUpiCKEBCOyLv5ALiGJ7IQq_z2pysAA0z2d3nu6-xFyyeCGgZQzDplMcj7nM0SXO3FEJgygSCAXcPxLn5KzGLcAWVpIMSFvzz3Wne-w81-WYo3VEH2kjaOxs7YaN4b60NS0HGiF0YbE16bX1tAyWPwwza6msbW6C03UTTvQPvr6na4XycNq83hOThxW0V78zCl5vV29LO-SzdP6frnYJFow3iVGSqOZ0IXLciGKEkQuOZ8jFmWBaKxlOuOZyEaRSmldJhmX4PIUrZ0LjWJK4NCrxzNisE61wX9iGBQDtcej9njUHo864BkjV4eIb1q1bfowvh5VGzvFmRIKRAocVGvc6Lz-w_lv8Tf4h3VC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantitative analysis of steel and iron by laser-induced breakdown spectroscopy using GA-KELM</title><source>IOP Publishing Journals</source><creator>MEI, Yaguang ; CHENG, Shusen ; HAO, Zhongqi ; GUO, Lianbo ; LI, Xiangyou ; ZENG, Xiaoyan ; GE, Junliang</creator><creatorcontrib>MEI, Yaguang ; CHENG, Shusen ; HAO, Zhongqi ; GUO, Lianbo ; LI, Xiangyou ; ZENG, Xiaoyan ; GE, Junliang</creatorcontrib><description>According to the multiple researches in the last couple of years, laser-induced breakdown spectroscopy (LIBS) has shown a great potential for rapid analysis in steel industry. Nevertheless, the accuracy and precision may be limited by complex matrix effect and self-absorption effect of LIBS seriously. A novel multivariate calibration method based on genetic algorithm-kernel extreme learning machine (GA-KELM) is proposed for quantitative analysis of multiple elements (Si, Mn, Cr, Ni, V, Ti, Cu, Mo) in forty-seven certified steel and iron samples. First, the standardized peak intensities of selected spectra lines are used as the input of model. Then, the genetic algorithm is adopted to optimize the model parameters due to its obvious capability in finding the global optimum solution. Based on these two steps above, the kernel method is introduced to create kernel matrix which is used to replace the hidden layer's output matrix. Finally, the least square is applied to calculate the model's output weight. In order to verify the predictive capability of the GA-KELM model, the R-square factor (R2), Root-mean-square Errors of Calibration (RMSEC), Root-mean-square Errors of Prediction (RMSEP) of GA-KELM model are compared with the traditional PLS algorithm, respectively. The results confirm that GA-KELM can reduce the interference from matrix effect and self-absorption effect and is suitable for multi-elements calibration of LIBS.</description><identifier>ISSN: 1009-0630</identifier><identifier>EISSN: 1009-0630</identifier><identifier>DOI: 10.1088/2058-6272/aaf6f3</identifier><identifier>CODEN: PSTHC3</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>alloy elements ; calibration ; genetic algorithm-kernel extreme learning machine (GA-KELM) ; laser-induced breakdown spectroscopy (LIBS)</subject><ispartof>Plasma science &amp; technology, 2019-03, Vol.21 (3), p.34020</ispartof><rights>2019 Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-d88dc13c9f56339b0368227aa9b9aadee1c52535ee1488ef581280f64aee73ca3</citedby><cites>FETCH-LOGICAL-c312t-d88dc13c9f56339b0368227aa9b9aadee1c52535ee1488ef581280f64aee73ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2058-6272/aaf6f3/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53824</link.rule.ids></links><search><creatorcontrib>MEI, Yaguang</creatorcontrib><creatorcontrib>CHENG, Shusen</creatorcontrib><creatorcontrib>HAO, Zhongqi</creatorcontrib><creatorcontrib>GUO, Lianbo</creatorcontrib><creatorcontrib>LI, Xiangyou</creatorcontrib><creatorcontrib>ZENG, Xiaoyan</creatorcontrib><creatorcontrib>GE, Junliang</creatorcontrib><title>Quantitative analysis of steel and iron by laser-induced breakdown spectroscopy using GA-KELM</title><title>Plasma science &amp; technology</title><addtitle>PST</addtitle><addtitle>Plasma Sci. Technol</addtitle><description>According to the multiple researches in the last couple of years, laser-induced breakdown spectroscopy (LIBS) has shown a great potential for rapid analysis in steel industry. Nevertheless, the accuracy and precision may be limited by complex matrix effect and self-absorption effect of LIBS seriously. A novel multivariate calibration method based on genetic algorithm-kernel extreme learning machine (GA-KELM) is proposed for quantitative analysis of multiple elements (Si, Mn, Cr, Ni, V, Ti, Cu, Mo) in forty-seven certified steel and iron samples. First, the standardized peak intensities of selected spectra lines are used as the input of model. Then, the genetic algorithm is adopted to optimize the model parameters due to its obvious capability in finding the global optimum solution. Based on these two steps above, the kernel method is introduced to create kernel matrix which is used to replace the hidden layer's output matrix. Finally, the least square is applied to calculate the model's output weight. In order to verify the predictive capability of the GA-KELM model, the R-square factor (R2), Root-mean-square Errors of Calibration (RMSEC), Root-mean-square Errors of Prediction (RMSEP) of GA-KELM model are compared with the traditional PLS algorithm, respectively. The results confirm that GA-KELM can reduce the interference from matrix effect and self-absorption effect and is suitable for multi-elements calibration of LIBS.</description><subject>alloy elements</subject><subject>calibration</subject><subject>genetic algorithm-kernel extreme learning machine (GA-KELM)</subject><subject>laser-induced breakdown spectroscopy (LIBS)</subject><issn>1009-0630</issn><issn>1009-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EEqWwM3pjIfRsJ6kzVlUpiCKEBCOyLv5ALiGJ7IQq_z2pysAA0z2d3nu6-xFyyeCGgZQzDplMcj7nM0SXO3FEJgygSCAXcPxLn5KzGLcAWVpIMSFvzz3Wne-w81-WYo3VEH2kjaOxs7YaN4b60NS0HGiF0YbE16bX1tAyWPwwza6msbW6C03UTTvQPvr6na4XycNq83hOThxW0V78zCl5vV29LO-SzdP6frnYJFow3iVGSqOZ0IXLciGKEkQuOZ8jFmWBaKxlOuOZyEaRSmldJhmX4PIUrZ0LjWJK4NCrxzNisE61wX9iGBQDtcej9njUHo864BkjV4eIb1q1bfowvh5VGzvFmRIKRAocVGvc6Lz-w_lv8Tf4h3VC</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>MEI, Yaguang</creator><creator>CHENG, Shusen</creator><creator>HAO, Zhongqi</creator><creator>GUO, Lianbo</creator><creator>LI, Xiangyou</creator><creator>ZENG, Xiaoyan</creator><creator>GE, Junliang</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190301</creationdate><title>Quantitative analysis of steel and iron by laser-induced breakdown spectroscopy using GA-KELM</title><author>MEI, Yaguang ; CHENG, Shusen ; HAO, Zhongqi ; GUO, Lianbo ; LI, Xiangyou ; ZENG, Xiaoyan ; GE, Junliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-d88dc13c9f56339b0368227aa9b9aadee1c52535ee1488ef581280f64aee73ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>alloy elements</topic><topic>calibration</topic><topic>genetic algorithm-kernel extreme learning machine (GA-KELM)</topic><topic>laser-induced breakdown spectroscopy (LIBS)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MEI, Yaguang</creatorcontrib><creatorcontrib>CHENG, Shusen</creatorcontrib><creatorcontrib>HAO, Zhongqi</creatorcontrib><creatorcontrib>GUO, Lianbo</creatorcontrib><creatorcontrib>LI, Xiangyou</creatorcontrib><creatorcontrib>ZENG, Xiaoyan</creatorcontrib><creatorcontrib>GE, Junliang</creatorcontrib><collection>CrossRef</collection><jtitle>Plasma science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MEI, Yaguang</au><au>CHENG, Shusen</au><au>HAO, Zhongqi</au><au>GUO, Lianbo</au><au>LI, Xiangyou</au><au>ZENG, Xiaoyan</au><au>GE, Junliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative analysis of steel and iron by laser-induced breakdown spectroscopy using GA-KELM</atitle><jtitle>Plasma science &amp; technology</jtitle><stitle>PST</stitle><addtitle>Plasma Sci. Technol</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>21</volume><issue>3</issue><spage>34020</spage><pages>34020-</pages><issn>1009-0630</issn><eissn>1009-0630</eissn><coden>PSTHC3</coden><abstract>According to the multiple researches in the last couple of years, laser-induced breakdown spectroscopy (LIBS) has shown a great potential for rapid analysis in steel industry. Nevertheless, the accuracy and precision may be limited by complex matrix effect and self-absorption effect of LIBS seriously. A novel multivariate calibration method based on genetic algorithm-kernel extreme learning machine (GA-KELM) is proposed for quantitative analysis of multiple elements (Si, Mn, Cr, Ni, V, Ti, Cu, Mo) in forty-seven certified steel and iron samples. First, the standardized peak intensities of selected spectra lines are used as the input of model. Then, the genetic algorithm is adopted to optimize the model parameters due to its obvious capability in finding the global optimum solution. Based on these two steps above, the kernel method is introduced to create kernel matrix which is used to replace the hidden layer's output matrix. Finally, the least square is applied to calculate the model's output weight. In order to verify the predictive capability of the GA-KELM model, the R-square factor (R2), Root-mean-square Errors of Calibration (RMSEC), Root-mean-square Errors of Prediction (RMSEP) of GA-KELM model are compared with the traditional PLS algorithm, respectively. The results confirm that GA-KELM can reduce the interference from matrix effect and self-absorption effect and is suitable for multi-elements calibration of LIBS.</abstract><pub>IOP Publishing</pub><doi>10.1088/2058-6272/aaf6f3</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1009-0630
ispartof Plasma science & technology, 2019-03, Vol.21 (3), p.34020
issn 1009-0630
1009-0630
language eng
recordid cdi_crossref_primary_10_1088_2058_6272_aaf6f3
source IOP Publishing Journals
subjects alloy elements
calibration
genetic algorithm-kernel extreme learning machine (GA-KELM)
laser-induced breakdown spectroscopy (LIBS)
title Quantitative analysis of steel and iron by laser-induced breakdown spectroscopy using GA-KELM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T06%3A14%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20analysis%20of%20steel%20and%20iron%20by%20laser-induced%20breakdown%20spectroscopy%20using%20GA-KELM&rft.jtitle=Plasma%20science%20&%20technology&rft.au=MEI,%20Yaguang&rft.date=2019-03-01&rft.volume=21&rft.issue=3&rft.spage=34020&rft.pages=34020-&rft.issn=1009-0630&rft.eissn=1009-0630&rft.coden=PSTHC3&rft_id=info:doi/10.1088/2058-6272/aaf6f3&rft_dat=%3Ciop_cross%3Epstaaf6f3%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true