Prediction of directional solidification in freeze casting of biomaterial scaffolds using physics-informed neural networks

Freeze casting, a manufacturing technique widely applied in biomedical fields for fabricating biomaterial scaffolds, poses challenges for predicting directional solidification due to its highly nonlinear behavior and complex interplay of process parameters. Conventional numerical methods, such as co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical physics & engineering express 2024-11, Vol.10 (6), p.65023
Hauptverfasser: Rouhollahi, Amir, Rismanian, Milad, Ebrahimi, Amin, Ilegbusi, Olusegun J, Nezami, Farhad R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 65023
container_title Biomedical physics & engineering express
container_volume 10
creator Rouhollahi, Amir
Rismanian, Milad
Ebrahimi, Amin
Ilegbusi, Olusegun J
Nezami, Farhad R
description Freeze casting, a manufacturing technique widely applied in biomedical fields for fabricating biomaterial scaffolds, poses challenges for predicting directional solidification due to its highly nonlinear behavior and complex interplay of process parameters. Conventional numerical methods, such as computational fluid dynamics (CFD), require adequate and accurate boundary condition knowledge, limiting their utility in real-world transient solidification applications due to technical limitations. In this study, we address this challenge by developing a physics-informed neural networks (PINNs) model to predict directional solidification in freeze-casting processes. The PINNs model integrates physical constraints with neural network predictions, requiring significantly fewer predetermined boundary conditions compared to CFD. Through a comparison with CFD simulations, the PINNs model demonstrates comparable accuracy in predicting temperature distribution and solidification patterns. This promising model achieves such a performance with only 5000 data points in space and time, equivalent to 250,000 timesteps, showcasing its ability to predict solidification dynamics with high accuracy. The study's major contributions lie in providing insights into solidification patterns during freeze-casting scaffold fabrication, facilitating the design of biomaterial scaffolds with finely tuned microstructures essential for various tissue engineering applications. Furthermore, the reduced computational demands of the PINNs model offer potential cost and time savings in scaffold fabrication, promising advancements in biomedical engineering research and development.
doi_str_mv 10.1088/2057-1976/ad7960
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2057_1976_ad7960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103444967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-d5508efbae3e2f62c68dd3ebafdb04722a4cafa557bd6fc09269bceb0839890f3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EolXpzoQyMhBw4sSJR1TxJVWCAWbLsc_gksTBToTaX4_TloqFyR_33Hu6B6HzBF8nuCxvUpwXccIKeiNUwSg-QtPD1_Gf-wTNvV9hjBOaUsryUzQhLKWYlGSKNi8OlJG9sW1kdaSMg-1D1JG3tVFGGym2VdNG2gFsIJLC96Z9H_nK2Eb04MzIS6G1rZWPBj-Wu4-1N9LHptXWNaCiFgYXuBb6b-s-_Rk60aL2MN-fM_R2f_e6eIyXzw9Pi9tlLNOE9bHKc1yCrgQQSDVNJS2VIlAJrSqcFWkqsjBY5HlRKaolDquxSkKFS8JKhjWZoctdbufs1wC-543xEupatGAHz0mCSZZljBYBxTtUOuu9A807Zxrh1jzBfJTOR6t8tMp30kPLxT59qMKSh4ZfxQG42gHGdnxlBxfc-v_zfgARpo6T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103444967</pqid></control><display><type>article</type><title>Prediction of directional solidification in freeze casting of biomaterial scaffolds using physics-informed neural networks</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Rouhollahi, Amir ; Rismanian, Milad ; Ebrahimi, Amin ; Ilegbusi, Olusegun J ; Nezami, Farhad R</creator><creatorcontrib>Rouhollahi, Amir ; Rismanian, Milad ; Ebrahimi, Amin ; Ilegbusi, Olusegun J ; Nezami, Farhad R</creatorcontrib><description>Freeze casting, a manufacturing technique widely applied in biomedical fields for fabricating biomaterial scaffolds, poses challenges for predicting directional solidification due to its highly nonlinear behavior and complex interplay of process parameters. Conventional numerical methods, such as computational fluid dynamics (CFD), require adequate and accurate boundary condition knowledge, limiting their utility in real-world transient solidification applications due to technical limitations. In this study, we address this challenge by developing a physics-informed neural networks (PINNs) model to predict directional solidification in freeze-casting processes. The PINNs model integrates physical constraints with neural network predictions, requiring significantly fewer predetermined boundary conditions compared to CFD. Through a comparison with CFD simulations, the PINNs model demonstrates comparable accuracy in predicting temperature distribution and solidification patterns. This promising model achieves such a performance with only 5000 data points in space and time, equivalent to 250,000 timesteps, showcasing its ability to predict solidification dynamics with high accuracy. The study's major contributions lie in providing insights into solidification patterns during freeze-casting scaffold fabrication, facilitating the design of biomaterial scaffolds with finely tuned microstructures essential for various tissue engineering applications. Furthermore, the reduced computational demands of the PINNs model offer potential cost and time savings in scaffold fabrication, promising advancements in biomedical engineering research and development.</description><identifier>ISSN: 2057-1976</identifier><identifier>EISSN: 2057-1976</identifier><identifier>DOI: 10.1088/2057-1976/ad7960</identifier><identifier>PMID: 39260383</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>biomaterial scaffold ; computational modeling ; directional solidification ; freeze casting ; physics-informed neural networks (PINNs)</subject><ispartof>Biomedical physics &amp; engineering express, 2024-11, Vol.10 (6), p.65023</ispartof><rights>2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c219t-d5508efbae3e2f62c68dd3ebafdb04722a4cafa557bd6fc09269bceb0839890f3</cites><orcidid>0000-0002-4912-2549 ; 0000-0002-7299-7394</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2057-1976/ad7960/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,778,782,27907,27908,53829,53876</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39260383$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rouhollahi, Amir</creatorcontrib><creatorcontrib>Rismanian, Milad</creatorcontrib><creatorcontrib>Ebrahimi, Amin</creatorcontrib><creatorcontrib>Ilegbusi, Olusegun J</creatorcontrib><creatorcontrib>Nezami, Farhad R</creatorcontrib><title>Prediction of directional solidification in freeze casting of biomaterial scaffolds using physics-informed neural networks</title><title>Biomedical physics &amp; engineering express</title><addtitle>BPEX</addtitle><addtitle>Biomed. Phys. Eng. Express</addtitle><description>Freeze casting, a manufacturing technique widely applied in biomedical fields for fabricating biomaterial scaffolds, poses challenges for predicting directional solidification due to its highly nonlinear behavior and complex interplay of process parameters. Conventional numerical methods, such as computational fluid dynamics (CFD), require adequate and accurate boundary condition knowledge, limiting their utility in real-world transient solidification applications due to technical limitations. In this study, we address this challenge by developing a physics-informed neural networks (PINNs) model to predict directional solidification in freeze-casting processes. The PINNs model integrates physical constraints with neural network predictions, requiring significantly fewer predetermined boundary conditions compared to CFD. Through a comparison with CFD simulations, the PINNs model demonstrates comparable accuracy in predicting temperature distribution and solidification patterns. This promising model achieves such a performance with only 5000 data points in space and time, equivalent to 250,000 timesteps, showcasing its ability to predict solidification dynamics with high accuracy. The study's major contributions lie in providing insights into solidification patterns during freeze-casting scaffold fabrication, facilitating the design of biomaterial scaffolds with finely tuned microstructures essential for various tissue engineering applications. Furthermore, the reduced computational demands of the PINNs model offer potential cost and time savings in scaffold fabrication, promising advancements in biomedical engineering research and development.</description><subject>biomaterial scaffold</subject><subject>computational modeling</subject><subject>directional solidification</subject><subject>freeze casting</subject><subject>physics-informed neural networks (PINNs)</subject><issn>2057-1976</issn><issn>2057-1976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EolXpzoQyMhBw4sSJR1TxJVWCAWbLsc_gksTBToTaX4_TloqFyR_33Hu6B6HzBF8nuCxvUpwXccIKeiNUwSg-QtPD1_Gf-wTNvV9hjBOaUsryUzQhLKWYlGSKNi8OlJG9sW1kdaSMg-1D1JG3tVFGGym2VdNG2gFsIJLC96Z9H_nK2Eb04MzIS6G1rZWPBj-Wu4-1N9LHptXWNaCiFgYXuBb6b-s-_Rk60aL2MN-fM_R2f_e6eIyXzw9Pi9tlLNOE9bHKc1yCrgQQSDVNJS2VIlAJrSqcFWkqsjBY5HlRKaolDquxSkKFS8JKhjWZoctdbufs1wC-543xEupatGAHz0mCSZZljBYBxTtUOuu9A807Zxrh1jzBfJTOR6t8tMp30kPLxT59qMKSh4ZfxQG42gHGdnxlBxfc-v_zfgARpo6T</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Rouhollahi, Amir</creator><creator>Rismanian, Milad</creator><creator>Ebrahimi, Amin</creator><creator>Ilegbusi, Olusegun J</creator><creator>Nezami, Farhad R</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4912-2549</orcidid><orcidid>https://orcid.org/0000-0002-7299-7394</orcidid></search><sort><creationdate>20241101</creationdate><title>Prediction of directional solidification in freeze casting of biomaterial scaffolds using physics-informed neural networks</title><author>Rouhollahi, Amir ; Rismanian, Milad ; Ebrahimi, Amin ; Ilegbusi, Olusegun J ; Nezami, Farhad R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-d5508efbae3e2f62c68dd3ebafdb04722a4cafa557bd6fc09269bceb0839890f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>biomaterial scaffold</topic><topic>computational modeling</topic><topic>directional solidification</topic><topic>freeze casting</topic><topic>physics-informed neural networks (PINNs)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rouhollahi, Amir</creatorcontrib><creatorcontrib>Rismanian, Milad</creatorcontrib><creatorcontrib>Ebrahimi, Amin</creatorcontrib><creatorcontrib>Ilegbusi, Olusegun J</creatorcontrib><creatorcontrib>Nezami, Farhad R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomedical physics &amp; engineering express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rouhollahi, Amir</au><au>Rismanian, Milad</au><au>Ebrahimi, Amin</au><au>Ilegbusi, Olusegun J</au><au>Nezami, Farhad R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of directional solidification in freeze casting of biomaterial scaffolds using physics-informed neural networks</atitle><jtitle>Biomedical physics &amp; engineering express</jtitle><stitle>BPEX</stitle><addtitle>Biomed. Phys. Eng. Express</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>10</volume><issue>6</issue><spage>65023</spage><pages>65023-</pages><issn>2057-1976</issn><eissn>2057-1976</eissn><abstract>Freeze casting, a manufacturing technique widely applied in biomedical fields for fabricating biomaterial scaffolds, poses challenges for predicting directional solidification due to its highly nonlinear behavior and complex interplay of process parameters. Conventional numerical methods, such as computational fluid dynamics (CFD), require adequate and accurate boundary condition knowledge, limiting their utility in real-world transient solidification applications due to technical limitations. In this study, we address this challenge by developing a physics-informed neural networks (PINNs) model to predict directional solidification in freeze-casting processes. The PINNs model integrates physical constraints with neural network predictions, requiring significantly fewer predetermined boundary conditions compared to CFD. Through a comparison with CFD simulations, the PINNs model demonstrates comparable accuracy in predicting temperature distribution and solidification patterns. This promising model achieves such a performance with only 5000 data points in space and time, equivalent to 250,000 timesteps, showcasing its ability to predict solidification dynamics with high accuracy. The study's major contributions lie in providing insights into solidification patterns during freeze-casting scaffold fabrication, facilitating the design of biomaterial scaffolds with finely tuned microstructures essential for various tissue engineering applications. Furthermore, the reduced computational demands of the PINNs model offer potential cost and time savings in scaffold fabrication, promising advancements in biomedical engineering research and development.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>39260383</pmid><doi>10.1088/2057-1976/ad7960</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4912-2549</orcidid><orcidid>https://orcid.org/0000-0002-7299-7394</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2057-1976
ispartof Biomedical physics & engineering express, 2024-11, Vol.10 (6), p.65023
issn 2057-1976
2057-1976
language eng
recordid cdi_crossref_primary_10_1088_2057_1976_ad7960
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects biomaterial scaffold
computational modeling
directional solidification
freeze casting
physics-informed neural networks (PINNs)
title Prediction of directional solidification in freeze casting of biomaterial scaffolds using physics-informed neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A36%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20directional%20solidification%20in%20freeze%20casting%20of%20biomaterial%20scaffolds%20using%20physics-informed%20neural%20networks&rft.jtitle=Biomedical%20physics%20&%20engineering%20express&rft.au=Rouhollahi,%20Amir&rft.date=2024-11-01&rft.volume=10&rft.issue=6&rft.spage=65023&rft.pages=65023-&rft.issn=2057-1976&rft.eissn=2057-1976&rft_id=info:doi/10.1088/2057-1976/ad7960&rft_dat=%3Cproquest_cross%3E3103444967%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3103444967&rft_id=info:pmid/39260383&rfr_iscdi=true