A novel heart sound segmentation algorithm via multi-feature input and neural network with attention mechanism

. Heart sound segmentation (HSS), which aims to identify the exact positions of the first heart sound(S1), second heart sound(S2), the duration of S1, systole, S2, and diastole within a cardiac cycle of phonocardiogram (PCG), is an indispensable step to find out heart health. Recently, some neural n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical physics & engineering express 2023-01, Vol.9 (1), p.15012
Hauptverfasser: Guo, Yang, Yang, Hongbo, Guo, Tao, Pan, Jiahua, Wang, Weilian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 15012
container_title Biomedical physics & engineering express
container_volume 9
creator Guo, Yang
Yang, Hongbo
Guo, Tao
Pan, Jiahua
Wang, Weilian
description . Heart sound segmentation (HSS), which aims to identify the exact positions of the first heart sound(S1), second heart sound(S2), the duration of S1, systole, S2, and diastole within a cardiac cycle of phonocardiogram (PCG), is an indispensable step to find out heart health. Recently, some neural network-based methods for heart sound segmentation have shown good performance. . In this paper, a novel method was proposed for HSS exactly using One-Dimensional Convolution and Bidirectional Long-Short Term Memory neural network with Attention mechanism (C-LSTM-A) by incorporating the 0.5-order smooth Shannon entropy envelope and its instantaneous phase waveform (IPW), and third intrinsic mode function (IMF-3) of PCG signal to reduce the difficulty of neural network learning features. . An average F1-score of 96.85 was achieved in the clinical research dataset (Fuwai Yunnan Cardiovascular Hospital heart sound dataset) and an average F1-score of 95.68 was achieved in 2016 PhysioNet/CinC Challenge dataset using the novel method. . The experimental results show that this method has advantages for normal PCG signals and common pathological PCG signals, and the segmented fundamental heart sound(S1, S2), systole, and diastole signal components are beneficial to the study of subsequent heart sound classification.
doi_str_mv 10.1088/2057-1976/ac9da6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2057_1976_ac9da6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2729523005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-60147ac2c9c1716747cbdc9264f54b915a097a68f7c06c7883cf769ee336c05e3</originalsourceid><addsrcrecordid>eNp1kE1P3DAURS1UBCNgzwp51y6aYicTO16iUWkrIXUDa-uN8zLjIbFTf0D59_VoAHXRrp5tnXuffAi55OwLZ113XbNWVlxJcQ1G9SCOyOL96cNf51NyEeOOMcZFLYRqT8hpI5pyU92CuBvq_BOOdIsQEo0-u55G3EzoEiTrHYVx44NN24k-WaBTHpOtBoSUA1Lr5pwolIjDHGAsIz378EifS4BCSqVl3zGh2YKzcTonxwOMES9e5xl5uP16v_pe3f389mN1c1eZRnSpEowvJZjaKMMlF3Ipzbo3qhbLoV2uFW-BKQmiG6Rhwsiua8wghUJsGmFYi80Z-XTonYP_lTEmPdlocBzBoc9R17JWbd0w1haUHVATfIwBBz0HO0F40ZzpvWi9N6n3JvVBdIlcvbbn9YT9e-BNawE-HgDrZ73zObjyWb2e8bdWmmvGW8ZrPfdDIT__g_zv5j_Co5ZP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729523005</pqid></control><display><type>article</type><title>A novel heart sound segmentation algorithm via multi-feature input and neural network with attention mechanism</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Guo, Yang ; Yang, Hongbo ; Guo, Tao ; Pan, Jiahua ; Wang, Weilian</creator><creatorcontrib>Guo, Yang ; Yang, Hongbo ; Guo, Tao ; Pan, Jiahua ; Wang, Weilian</creatorcontrib><description>. Heart sound segmentation (HSS), which aims to identify the exact positions of the first heart sound(S1), second heart sound(S2), the duration of S1, systole, S2, and diastole within a cardiac cycle of phonocardiogram (PCG), is an indispensable step to find out heart health. Recently, some neural network-based methods for heart sound segmentation have shown good performance. . In this paper, a novel method was proposed for HSS exactly using One-Dimensional Convolution and Bidirectional Long-Short Term Memory neural network with Attention mechanism (C-LSTM-A) by incorporating the 0.5-order smooth Shannon entropy envelope and its instantaneous phase waveform (IPW), and third intrinsic mode function (IMF-3) of PCG signal to reduce the difficulty of neural network learning features. . An average F1-score of 96.85 was achieved in the clinical research dataset (Fuwai Yunnan Cardiovascular Hospital heart sound dataset) and an average F1-score of 95.68 was achieved in 2016 PhysioNet/CinC Challenge dataset using the novel method. . The experimental results show that this method has advantages for normal PCG signals and common pathological PCG signals, and the segmented fundamental heart sound(S1, S2), systole, and diastole signal components are beneficial to the study of subsequent heart sound classification.</description><identifier>ISSN: 2057-1976</identifier><identifier>EISSN: 2057-1976</identifier><identifier>DOI: 10.1088/2057-1976/ac9da6</identifier><identifier>PMID: 36301698</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Algorithms ; attention mechanism ; China ; heart sound segmentation ; Heart Sounds ; instantaneous phase waveform ; intrinsic mode function ; neural network ; Neural Networks, Computer ; Phonocardiography - methods ; Signal Processing, Computer-Assisted</subject><ispartof>Biomedical physics &amp; engineering express, 2023-01, Vol.9 (1), p.15012</ispartof><rights>2022 IOP Publishing Ltd</rights><rights>2022 IOP Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-60147ac2c9c1716747cbdc9264f54b915a097a68f7c06c7883cf769ee336c05e3</citedby><cites>FETCH-LOGICAL-c368t-60147ac2c9c1716747cbdc9264f54b915a097a68f7c06c7883cf769ee336c05e3</cites><orcidid>0000-0001-7659-3293</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2057-1976/ac9da6/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36301698$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Yang</creatorcontrib><creatorcontrib>Yang, Hongbo</creatorcontrib><creatorcontrib>Guo, Tao</creatorcontrib><creatorcontrib>Pan, Jiahua</creatorcontrib><creatorcontrib>Wang, Weilian</creatorcontrib><title>A novel heart sound segmentation algorithm via multi-feature input and neural network with attention mechanism</title><title>Biomedical physics &amp; engineering express</title><addtitle>BPEX</addtitle><addtitle>Biomed. Phys. Eng. Express</addtitle><description>. Heart sound segmentation (HSS), which aims to identify the exact positions of the first heart sound(S1), second heart sound(S2), the duration of S1, systole, S2, and diastole within a cardiac cycle of phonocardiogram (PCG), is an indispensable step to find out heart health. Recently, some neural network-based methods for heart sound segmentation have shown good performance. . In this paper, a novel method was proposed for HSS exactly using One-Dimensional Convolution and Bidirectional Long-Short Term Memory neural network with Attention mechanism (C-LSTM-A) by incorporating the 0.5-order smooth Shannon entropy envelope and its instantaneous phase waveform (IPW), and third intrinsic mode function (IMF-3) of PCG signal to reduce the difficulty of neural network learning features. . An average F1-score of 96.85 was achieved in the clinical research dataset (Fuwai Yunnan Cardiovascular Hospital heart sound dataset) and an average F1-score of 95.68 was achieved in 2016 PhysioNet/CinC Challenge dataset using the novel method. . The experimental results show that this method has advantages for normal PCG signals and common pathological PCG signals, and the segmented fundamental heart sound(S1, S2), systole, and diastole signal components are beneficial to the study of subsequent heart sound classification.</description><subject>Algorithms</subject><subject>attention mechanism</subject><subject>China</subject><subject>heart sound segmentation</subject><subject>Heart Sounds</subject><subject>instantaneous phase waveform</subject><subject>intrinsic mode function</subject><subject>neural network</subject><subject>Neural Networks, Computer</subject><subject>Phonocardiography - methods</subject><subject>Signal Processing, Computer-Assisted</subject><issn>2057-1976</issn><issn>2057-1976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1P3DAURS1UBCNgzwp51y6aYicTO16iUWkrIXUDa-uN8zLjIbFTf0D59_VoAHXRrp5tnXuffAi55OwLZ113XbNWVlxJcQ1G9SCOyOL96cNf51NyEeOOMcZFLYRqT8hpI5pyU92CuBvq_BOOdIsQEo0-u55G3EzoEiTrHYVx44NN24k-WaBTHpOtBoSUA1Lr5pwolIjDHGAsIz378EifS4BCSqVl3zGh2YKzcTonxwOMES9e5xl5uP16v_pe3f389mN1c1eZRnSpEowvJZjaKMMlF3Ipzbo3qhbLoV2uFW-BKQmiG6Rhwsiua8wghUJsGmFYi80Z-XTonYP_lTEmPdlocBzBoc9R17JWbd0w1haUHVATfIwBBz0HO0F40ZzpvWi9N6n3JvVBdIlcvbbn9YT9e-BNawE-HgDrZ73zObjyWb2e8bdWmmvGW8ZrPfdDIT__g_zv5j_Co5ZP</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Guo, Yang</creator><creator>Yang, Hongbo</creator><creator>Guo, Tao</creator><creator>Pan, Jiahua</creator><creator>Wang, Weilian</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7659-3293</orcidid></search><sort><creationdate>20230101</creationdate><title>A novel heart sound segmentation algorithm via multi-feature input and neural network with attention mechanism</title><author>Guo, Yang ; Yang, Hongbo ; Guo, Tao ; Pan, Jiahua ; Wang, Weilian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-60147ac2c9c1716747cbdc9264f54b915a097a68f7c06c7883cf769ee336c05e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>attention mechanism</topic><topic>China</topic><topic>heart sound segmentation</topic><topic>Heart Sounds</topic><topic>instantaneous phase waveform</topic><topic>intrinsic mode function</topic><topic>neural network</topic><topic>Neural Networks, Computer</topic><topic>Phonocardiography - methods</topic><topic>Signal Processing, Computer-Assisted</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Yang</creatorcontrib><creatorcontrib>Yang, Hongbo</creatorcontrib><creatorcontrib>Guo, Tao</creatorcontrib><creatorcontrib>Pan, Jiahua</creatorcontrib><creatorcontrib>Wang, Weilian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomedical physics &amp; engineering express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Yang</au><au>Yang, Hongbo</au><au>Guo, Tao</au><au>Pan, Jiahua</au><au>Wang, Weilian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel heart sound segmentation algorithm via multi-feature input and neural network with attention mechanism</atitle><jtitle>Biomedical physics &amp; engineering express</jtitle><stitle>BPEX</stitle><addtitle>Biomed. Phys. Eng. Express</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>9</volume><issue>1</issue><spage>15012</spage><pages>15012-</pages><issn>2057-1976</issn><eissn>2057-1976</eissn><coden>NJOPFM</coden><abstract>. Heart sound segmentation (HSS), which aims to identify the exact positions of the first heart sound(S1), second heart sound(S2), the duration of S1, systole, S2, and diastole within a cardiac cycle of phonocardiogram (PCG), is an indispensable step to find out heart health. Recently, some neural network-based methods for heart sound segmentation have shown good performance. . In this paper, a novel method was proposed for HSS exactly using One-Dimensional Convolution and Bidirectional Long-Short Term Memory neural network with Attention mechanism (C-LSTM-A) by incorporating the 0.5-order smooth Shannon entropy envelope and its instantaneous phase waveform (IPW), and third intrinsic mode function (IMF-3) of PCG signal to reduce the difficulty of neural network learning features. . An average F1-score of 96.85 was achieved in the clinical research dataset (Fuwai Yunnan Cardiovascular Hospital heart sound dataset) and an average F1-score of 95.68 was achieved in 2016 PhysioNet/CinC Challenge dataset using the novel method. . The experimental results show that this method has advantages for normal PCG signals and common pathological PCG signals, and the segmented fundamental heart sound(S1, S2), systole, and diastole signal components are beneficial to the study of subsequent heart sound classification.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>36301698</pmid><doi>10.1088/2057-1976/ac9da6</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7659-3293</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2057-1976
ispartof Biomedical physics & engineering express, 2023-01, Vol.9 (1), p.15012
issn 2057-1976
2057-1976
language eng
recordid cdi_crossref_primary_10_1088_2057_1976_ac9da6
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Algorithms
attention mechanism
China
heart sound segmentation
Heart Sounds
instantaneous phase waveform
intrinsic mode function
neural network
Neural Networks, Computer
Phonocardiography - methods
Signal Processing, Computer-Assisted
title A novel heart sound segmentation algorithm via multi-feature input and neural network with attention mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A40%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20heart%20sound%20segmentation%20algorithm%20via%20multi-feature%20input%20and%20neural%20network%20with%20attention%20mechanism&rft.jtitle=Biomedical%20physics%20&%20engineering%20express&rft.au=Guo,%20Yang&rft.date=2023-01-01&rft.volume=9&rft.issue=1&rft.spage=15012&rft.pages=15012-&rft.issn=2057-1976&rft.eissn=2057-1976&rft.coden=NJOPFM&rft_id=info:doi/10.1088/2057-1976/ac9da6&rft_dat=%3Cproquest_cross%3E2729523005%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2729523005&rft_id=info:pmid/36301698&rfr_iscdi=true