A novel heart sound segmentation algorithm via multi-feature input and neural network with attention mechanism
. Heart sound segmentation (HSS), which aims to identify the exact positions of the first heart sound(S1), second heart sound(S2), the duration of S1, systole, S2, and diastole within a cardiac cycle of phonocardiogram (PCG), is an indispensable step to find out heart health. Recently, some neural n...
Gespeichert in:
Veröffentlicht in: | Biomedical physics & engineering express 2023-01, Vol.9 (1), p.15012 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 15012 |
container_title | Biomedical physics & engineering express |
container_volume | 9 |
creator | Guo, Yang Yang, Hongbo Guo, Tao Pan, Jiahua Wang, Weilian |
description | . Heart sound segmentation (HSS), which aims to identify the exact positions of the first heart sound(S1), second heart sound(S2), the duration of S1, systole, S2, and diastole within a cardiac cycle of phonocardiogram (PCG), is an indispensable step to find out heart health. Recently, some neural network-based methods for heart sound segmentation have shown good performance.
. In this paper, a novel method was proposed for HSS exactly using One-Dimensional Convolution and Bidirectional Long-Short Term Memory neural network with Attention mechanism (C-LSTM-A) by incorporating the 0.5-order smooth Shannon entropy envelope and its instantaneous phase waveform (IPW), and third intrinsic mode function (IMF-3) of PCG signal to reduce the difficulty of neural network learning features.
. An average F1-score of 96.85 was achieved in the clinical research dataset (Fuwai Yunnan Cardiovascular Hospital heart sound dataset) and an average F1-score of 95.68 was achieved in 2016 PhysioNet/CinC Challenge dataset using the novel method.
. The experimental results show that this method has advantages for normal PCG signals and common pathological PCG signals, and the segmented fundamental heart sound(S1, S2), systole, and diastole signal components are beneficial to the study of subsequent heart sound classification. |
doi_str_mv | 10.1088/2057-1976/ac9da6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2057_1976_ac9da6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2729523005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-60147ac2c9c1716747cbdc9264f54b915a097a68f7c06c7883cf769ee336c05e3</originalsourceid><addsrcrecordid>eNp1kE1P3DAURS1UBCNgzwp51y6aYicTO16iUWkrIXUDa-uN8zLjIbFTf0D59_VoAHXRrp5tnXuffAi55OwLZ113XbNWVlxJcQ1G9SCOyOL96cNf51NyEeOOMcZFLYRqT8hpI5pyU92CuBvq_BOOdIsQEo0-u55G3EzoEiTrHYVx44NN24k-WaBTHpOtBoSUA1Lr5pwolIjDHGAsIz378EifS4BCSqVl3zGh2YKzcTonxwOMES9e5xl5uP16v_pe3f389mN1c1eZRnSpEowvJZjaKMMlF3Ipzbo3qhbLoV2uFW-BKQmiG6Rhwsiua8wghUJsGmFYi80Z-XTonYP_lTEmPdlocBzBoc9R17JWbd0w1haUHVATfIwBBz0HO0F40ZzpvWi9N6n3JvVBdIlcvbbn9YT9e-BNawE-HgDrZ73zObjyWb2e8bdWmmvGW8ZrPfdDIT__g_zv5j_Co5ZP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729523005</pqid></control><display><type>article</type><title>A novel heart sound segmentation algorithm via multi-feature input and neural network with attention mechanism</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Guo, Yang ; Yang, Hongbo ; Guo, Tao ; Pan, Jiahua ; Wang, Weilian</creator><creatorcontrib>Guo, Yang ; Yang, Hongbo ; Guo, Tao ; Pan, Jiahua ; Wang, Weilian</creatorcontrib><description>. Heart sound segmentation (HSS), which aims to identify the exact positions of the first heart sound(S1), second heart sound(S2), the duration of S1, systole, S2, and diastole within a cardiac cycle of phonocardiogram (PCG), is an indispensable step to find out heart health. Recently, some neural network-based methods for heart sound segmentation have shown good performance.
. In this paper, a novel method was proposed for HSS exactly using One-Dimensional Convolution and Bidirectional Long-Short Term Memory neural network with Attention mechanism (C-LSTM-A) by incorporating the 0.5-order smooth Shannon entropy envelope and its instantaneous phase waveform (IPW), and third intrinsic mode function (IMF-3) of PCG signal to reduce the difficulty of neural network learning features.
. An average F1-score of 96.85 was achieved in the clinical research dataset (Fuwai Yunnan Cardiovascular Hospital heart sound dataset) and an average F1-score of 95.68 was achieved in 2016 PhysioNet/CinC Challenge dataset using the novel method.
. The experimental results show that this method has advantages for normal PCG signals and common pathological PCG signals, and the segmented fundamental heart sound(S1, S2), systole, and diastole signal components are beneficial to the study of subsequent heart sound classification.</description><identifier>ISSN: 2057-1976</identifier><identifier>EISSN: 2057-1976</identifier><identifier>DOI: 10.1088/2057-1976/ac9da6</identifier><identifier>PMID: 36301698</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Algorithms ; attention mechanism ; China ; heart sound segmentation ; Heart Sounds ; instantaneous phase waveform ; intrinsic mode function ; neural network ; Neural Networks, Computer ; Phonocardiography - methods ; Signal Processing, Computer-Assisted</subject><ispartof>Biomedical physics & engineering express, 2023-01, Vol.9 (1), p.15012</ispartof><rights>2022 IOP Publishing Ltd</rights><rights>2022 IOP Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-60147ac2c9c1716747cbdc9264f54b915a097a68f7c06c7883cf769ee336c05e3</citedby><cites>FETCH-LOGICAL-c368t-60147ac2c9c1716747cbdc9264f54b915a097a68f7c06c7883cf769ee336c05e3</cites><orcidid>0000-0001-7659-3293</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2057-1976/ac9da6/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36301698$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Yang</creatorcontrib><creatorcontrib>Yang, Hongbo</creatorcontrib><creatorcontrib>Guo, Tao</creatorcontrib><creatorcontrib>Pan, Jiahua</creatorcontrib><creatorcontrib>Wang, Weilian</creatorcontrib><title>A novel heart sound segmentation algorithm via multi-feature input and neural network with attention mechanism</title><title>Biomedical physics & engineering express</title><addtitle>BPEX</addtitle><addtitle>Biomed. Phys. Eng. Express</addtitle><description>. Heart sound segmentation (HSS), which aims to identify the exact positions of the first heart sound(S1), second heart sound(S2), the duration of S1, systole, S2, and diastole within a cardiac cycle of phonocardiogram (PCG), is an indispensable step to find out heart health. Recently, some neural network-based methods for heart sound segmentation have shown good performance.
. In this paper, a novel method was proposed for HSS exactly using One-Dimensional Convolution and Bidirectional Long-Short Term Memory neural network with Attention mechanism (C-LSTM-A) by incorporating the 0.5-order smooth Shannon entropy envelope and its instantaneous phase waveform (IPW), and third intrinsic mode function (IMF-3) of PCG signal to reduce the difficulty of neural network learning features.
. An average F1-score of 96.85 was achieved in the clinical research dataset (Fuwai Yunnan Cardiovascular Hospital heart sound dataset) and an average F1-score of 95.68 was achieved in 2016 PhysioNet/CinC Challenge dataset using the novel method.
. The experimental results show that this method has advantages for normal PCG signals and common pathological PCG signals, and the segmented fundamental heart sound(S1, S2), systole, and diastole signal components are beneficial to the study of subsequent heart sound classification.</description><subject>Algorithms</subject><subject>attention mechanism</subject><subject>China</subject><subject>heart sound segmentation</subject><subject>Heart Sounds</subject><subject>instantaneous phase waveform</subject><subject>intrinsic mode function</subject><subject>neural network</subject><subject>Neural Networks, Computer</subject><subject>Phonocardiography - methods</subject><subject>Signal Processing, Computer-Assisted</subject><issn>2057-1976</issn><issn>2057-1976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1P3DAURS1UBCNgzwp51y6aYicTO16iUWkrIXUDa-uN8zLjIbFTf0D59_VoAHXRrp5tnXuffAi55OwLZ113XbNWVlxJcQ1G9SCOyOL96cNf51NyEeOOMcZFLYRqT8hpI5pyU92CuBvq_BOOdIsQEo0-u55G3EzoEiTrHYVx44NN24k-WaBTHpOtBoSUA1Lr5pwolIjDHGAsIz378EifS4BCSqVl3zGh2YKzcTonxwOMES9e5xl5uP16v_pe3f389mN1c1eZRnSpEowvJZjaKMMlF3Ipzbo3qhbLoV2uFW-BKQmiG6Rhwsiua8wghUJsGmFYi80Z-XTonYP_lTEmPdlocBzBoc9R17JWbd0w1haUHVATfIwBBz0HO0F40ZzpvWi9N6n3JvVBdIlcvbbn9YT9e-BNawE-HgDrZ73zObjyWb2e8bdWmmvGW8ZrPfdDIT__g_zv5j_Co5ZP</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Guo, Yang</creator><creator>Yang, Hongbo</creator><creator>Guo, Tao</creator><creator>Pan, Jiahua</creator><creator>Wang, Weilian</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7659-3293</orcidid></search><sort><creationdate>20230101</creationdate><title>A novel heart sound segmentation algorithm via multi-feature input and neural network with attention mechanism</title><author>Guo, Yang ; Yang, Hongbo ; Guo, Tao ; Pan, Jiahua ; Wang, Weilian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-60147ac2c9c1716747cbdc9264f54b915a097a68f7c06c7883cf769ee336c05e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>attention mechanism</topic><topic>China</topic><topic>heart sound segmentation</topic><topic>Heart Sounds</topic><topic>instantaneous phase waveform</topic><topic>intrinsic mode function</topic><topic>neural network</topic><topic>Neural Networks, Computer</topic><topic>Phonocardiography - methods</topic><topic>Signal Processing, Computer-Assisted</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Yang</creatorcontrib><creatorcontrib>Yang, Hongbo</creatorcontrib><creatorcontrib>Guo, Tao</creatorcontrib><creatorcontrib>Pan, Jiahua</creatorcontrib><creatorcontrib>Wang, Weilian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomedical physics & engineering express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Yang</au><au>Yang, Hongbo</au><au>Guo, Tao</au><au>Pan, Jiahua</au><au>Wang, Weilian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel heart sound segmentation algorithm via multi-feature input and neural network with attention mechanism</atitle><jtitle>Biomedical physics & engineering express</jtitle><stitle>BPEX</stitle><addtitle>Biomed. Phys. Eng. Express</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>9</volume><issue>1</issue><spage>15012</spage><pages>15012-</pages><issn>2057-1976</issn><eissn>2057-1976</eissn><coden>NJOPFM</coden><abstract>. Heart sound segmentation (HSS), which aims to identify the exact positions of the first heart sound(S1), second heart sound(S2), the duration of S1, systole, S2, and diastole within a cardiac cycle of phonocardiogram (PCG), is an indispensable step to find out heart health. Recently, some neural network-based methods for heart sound segmentation have shown good performance.
. In this paper, a novel method was proposed for HSS exactly using One-Dimensional Convolution and Bidirectional Long-Short Term Memory neural network with Attention mechanism (C-LSTM-A) by incorporating the 0.5-order smooth Shannon entropy envelope and its instantaneous phase waveform (IPW), and third intrinsic mode function (IMF-3) of PCG signal to reduce the difficulty of neural network learning features.
. An average F1-score of 96.85 was achieved in the clinical research dataset (Fuwai Yunnan Cardiovascular Hospital heart sound dataset) and an average F1-score of 95.68 was achieved in 2016 PhysioNet/CinC Challenge dataset using the novel method.
. The experimental results show that this method has advantages for normal PCG signals and common pathological PCG signals, and the segmented fundamental heart sound(S1, S2), systole, and diastole signal components are beneficial to the study of subsequent heart sound classification.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>36301698</pmid><doi>10.1088/2057-1976/ac9da6</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7659-3293</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2057-1976 |
ispartof | Biomedical physics & engineering express, 2023-01, Vol.9 (1), p.15012 |
issn | 2057-1976 2057-1976 |
language | eng |
recordid | cdi_crossref_primary_10_1088_2057_1976_ac9da6 |
source | MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Algorithms attention mechanism China heart sound segmentation Heart Sounds instantaneous phase waveform intrinsic mode function neural network Neural Networks, Computer Phonocardiography - methods Signal Processing, Computer-Assisted |
title | A novel heart sound segmentation algorithm via multi-feature input and neural network with attention mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A40%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20heart%20sound%20segmentation%20algorithm%20via%20multi-feature%20input%20and%20neural%20network%20with%20attention%20mechanism&rft.jtitle=Biomedical%20physics%20&%20engineering%20express&rft.au=Guo,%20Yang&rft.date=2023-01-01&rft.volume=9&rft.issue=1&rft.spage=15012&rft.pages=15012-&rft.issn=2057-1976&rft.eissn=2057-1976&rft.coden=NJOPFM&rft_id=info:doi/10.1088/2057-1976/ac9da6&rft_dat=%3Cproquest_cross%3E2729523005%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2729523005&rft_id=info:pmid/36301698&rfr_iscdi=true |