Versatile microfluidic platform embedded with sidewall three-dimensional electrodes for cell manipulation
The trapping and manipulation of single and small numbers of cells is becoming increasingly important for the development and understanding of cell biology, disease predication and disease diagnostics. In the present work, we developed two dielectrophoresis (DEP) based microfluidic devices, both emb...
Gespeichert in:
Veröffentlicht in: | Biomedical physics & engineering express 2019-08, Vol.5 (5), p.55003 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 55003 |
container_title | Biomedical physics & engineering express |
container_volume | 5 |
creator | Puttaswamy, Srinivasu Valagerahally Fishlock, Sam Jeffery Steele, David Shi, Qiongfeng Lee, Chengkuo McLaughlin, James |
description | The trapping and manipulation of single and small numbers of cells is becoming increasingly important for the development and understanding of cell biology, disease predication and disease diagnostics. In the present work, we developed two dielectrophoresis (DEP) based microfluidic devices, both embedded with three-dimensional (3D) microelectrodes. The first microfluidic device is used for the trajectory switching of cells. The second is a single microfluidic platform used for cell concentration, trapping of single, two cells (doublets) and three cell clusters (triplet). Red blood cell (RBC) trajectory switching to different outlets was achieved by applying 20 Vpp at 1 kHz to the 3D microelectrodes. RBC pre-concentration and trapping was realized by applying 10 Vpp at 5 MHz. During RBC trapping at 5% hematocrit, a trapping efficiency of up to 84% was achieved for doublets and triplets, and at 1% hematocrit, a 67% single cell trapping efficiency was obtained. RBC trajectory switching takes place in ∼2 to 4 s and cell trapping in ∼8 to 10 s following the application of electric field. We performed simulations on comparable 2D planar and 3D microelectrodes which confirmed that 3D microelectrodes support more uniform particle manipulation throughout the channel height direction. |
doi_str_mv | 10.1088/2057-1976/ab268e |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2057_1976_ab268e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>bpexab268e</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-daab7015b5f42f0dcfed18d82182230bc380965f3f41db2b975ec9041969262a3</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWLR3j7l5cW2S3WSzRyl-QcGLeg35mNCUbHdJtlT_e1Mq4kGZwwzDew_eD6ErSm4pkXLBCG8r2rVioQ0TEk7Q7Od1-us-R_OcN4QQKpgQHZ-h8A4p6ylEwH2wafBxF1yweIx68kPqMfQGnAOH92Fa4xwc7HWMeFongMqFHrY5DFsdMUSwUxocZFyM2EJR9Xobxl2JKpJLdOZ1zDD_3hfo7eH-dflUrV4en5d3q8oy2UyV09q0hHLDfcM8cdaDo9JJRiVjNTG2lqQT3Ne-oc4w07UcbEca2omOCabrC0SOuaVNzgm8GlPodfpUlKgDLXXAoQ441JFWsVwfLWEY1WbYpdInKzPCh-JlCOeE1Gp0vihv_lD-G_wF8VN7Rw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Versatile microfluidic platform embedded with sidewall three-dimensional electrodes for cell manipulation</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Puttaswamy, Srinivasu Valagerahally ; Fishlock, Sam Jeffery ; Steele, David ; Shi, Qiongfeng ; Lee, Chengkuo ; McLaughlin, James</creator><creatorcontrib>Puttaswamy, Srinivasu Valagerahally ; Fishlock, Sam Jeffery ; Steele, David ; Shi, Qiongfeng ; Lee, Chengkuo ; McLaughlin, James</creatorcontrib><description>The trapping and manipulation of single and small numbers of cells is becoming increasingly important for the development and understanding of cell biology, disease predication and disease diagnostics. In the present work, we developed two dielectrophoresis (DEP) based microfluidic devices, both embedded with three-dimensional (3D) microelectrodes. The first microfluidic device is used for the trajectory switching of cells. The second is a single microfluidic platform used for cell concentration, trapping of single, two cells (doublets) and three cell clusters (triplet). Red blood cell (RBC) trajectory switching to different outlets was achieved by applying 20 Vpp at 1 kHz to the 3D microelectrodes. RBC pre-concentration and trapping was realized by applying 10 Vpp at 5 MHz. During RBC trapping at 5% hematocrit, a trapping efficiency of up to 84% was achieved for doublets and triplets, and at 1% hematocrit, a 67% single cell trapping efficiency was obtained. RBC trajectory switching takes place in ∼2 to 4 s and cell trapping in ∼8 to 10 s following the application of electric field. We performed simulations on comparable 2D planar and 3D microelectrodes which confirmed that 3D microelectrodes support more uniform particle manipulation throughout the channel height direction.</description><identifier>ISSN: 2057-1976</identifier><identifier>EISSN: 2057-1976</identifier><identifier>DOI: 10.1088/2057-1976/ab268e</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>3D microelectrodes ; cell preconcentration ; cell trapping ; microfluidics</subject><ispartof>Biomedical physics & engineering express, 2019-08, Vol.5 (5), p.55003</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-daab7015b5f42f0dcfed18d82182230bc380965f3f41db2b975ec9041969262a3</citedby><cites>FETCH-LOGICAL-c284t-daab7015b5f42f0dcfed18d82182230bc380965f3f41db2b975ec9041969262a3</cites><orcidid>0000-0003-2208-7496 ; 0000-0002-8886-3649 ; 0000-0003-0712-8106</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2057-1976/ab268e/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Puttaswamy, Srinivasu Valagerahally</creatorcontrib><creatorcontrib>Fishlock, Sam Jeffery</creatorcontrib><creatorcontrib>Steele, David</creatorcontrib><creatorcontrib>Shi, Qiongfeng</creatorcontrib><creatorcontrib>Lee, Chengkuo</creatorcontrib><creatorcontrib>McLaughlin, James</creatorcontrib><title>Versatile microfluidic platform embedded with sidewall three-dimensional electrodes for cell manipulation</title><title>Biomedical physics & engineering express</title><addtitle>BPEX</addtitle><addtitle>Biomed. Phys. Eng. Express</addtitle><description>The trapping and manipulation of single and small numbers of cells is becoming increasingly important for the development and understanding of cell biology, disease predication and disease diagnostics. In the present work, we developed two dielectrophoresis (DEP) based microfluidic devices, both embedded with three-dimensional (3D) microelectrodes. The first microfluidic device is used for the trajectory switching of cells. The second is a single microfluidic platform used for cell concentration, trapping of single, two cells (doublets) and three cell clusters (triplet). Red blood cell (RBC) trajectory switching to different outlets was achieved by applying 20 Vpp at 1 kHz to the 3D microelectrodes. RBC pre-concentration and trapping was realized by applying 10 Vpp at 5 MHz. During RBC trapping at 5% hematocrit, a trapping efficiency of up to 84% was achieved for doublets and triplets, and at 1% hematocrit, a 67% single cell trapping efficiency was obtained. RBC trajectory switching takes place in ∼2 to 4 s and cell trapping in ∼8 to 10 s following the application of electric field. We performed simulations on comparable 2D planar and 3D microelectrodes which confirmed that 3D microelectrodes support more uniform particle manipulation throughout the channel height direction.</description><subject>3D microelectrodes</subject><subject>cell preconcentration</subject><subject>cell trapping</subject><subject>microfluidics</subject><issn>2057-1976</issn><issn>2057-1976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWLR3j7l5cW2S3WSzRyl-QcGLeg35mNCUbHdJtlT_e1Mq4kGZwwzDew_eD6ErSm4pkXLBCG8r2rVioQ0TEk7Q7Od1-us-R_OcN4QQKpgQHZ-h8A4p6ylEwH2wafBxF1yweIx68kPqMfQGnAOH92Fa4xwc7HWMeFongMqFHrY5DFsdMUSwUxocZFyM2EJR9Xobxl2JKpJLdOZ1zDD_3hfo7eH-dflUrV4en5d3q8oy2UyV09q0hHLDfcM8cdaDo9JJRiVjNTG2lqQT3Ne-oc4w07UcbEca2omOCabrC0SOuaVNzgm8GlPodfpUlKgDLXXAoQ441JFWsVwfLWEY1WbYpdInKzPCh-JlCOeE1Gp0vihv_lD-G_wF8VN7Rw</recordid><startdate>20190807</startdate><enddate>20190807</enddate><creator>Puttaswamy, Srinivasu Valagerahally</creator><creator>Fishlock, Sam Jeffery</creator><creator>Steele, David</creator><creator>Shi, Qiongfeng</creator><creator>Lee, Chengkuo</creator><creator>McLaughlin, James</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2208-7496</orcidid><orcidid>https://orcid.org/0000-0002-8886-3649</orcidid><orcidid>https://orcid.org/0000-0003-0712-8106</orcidid></search><sort><creationdate>20190807</creationdate><title>Versatile microfluidic platform embedded with sidewall three-dimensional electrodes for cell manipulation</title><author>Puttaswamy, Srinivasu Valagerahally ; Fishlock, Sam Jeffery ; Steele, David ; Shi, Qiongfeng ; Lee, Chengkuo ; McLaughlin, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-daab7015b5f42f0dcfed18d82182230bc380965f3f41db2b975ec9041969262a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3D microelectrodes</topic><topic>cell preconcentration</topic><topic>cell trapping</topic><topic>microfluidics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Puttaswamy, Srinivasu Valagerahally</creatorcontrib><creatorcontrib>Fishlock, Sam Jeffery</creatorcontrib><creatorcontrib>Steele, David</creatorcontrib><creatorcontrib>Shi, Qiongfeng</creatorcontrib><creatorcontrib>Lee, Chengkuo</creatorcontrib><creatorcontrib>McLaughlin, James</creatorcontrib><collection>CrossRef</collection><jtitle>Biomedical physics & engineering express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Puttaswamy, Srinivasu Valagerahally</au><au>Fishlock, Sam Jeffery</au><au>Steele, David</au><au>Shi, Qiongfeng</au><au>Lee, Chengkuo</au><au>McLaughlin, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Versatile microfluidic platform embedded with sidewall three-dimensional electrodes for cell manipulation</atitle><jtitle>Biomedical physics & engineering express</jtitle><stitle>BPEX</stitle><addtitle>Biomed. Phys. Eng. Express</addtitle><date>2019-08-07</date><risdate>2019</risdate><volume>5</volume><issue>5</issue><spage>55003</spage><pages>55003-</pages><issn>2057-1976</issn><eissn>2057-1976</eissn><coden>NJOPFM</coden><abstract>The trapping and manipulation of single and small numbers of cells is becoming increasingly important for the development and understanding of cell biology, disease predication and disease diagnostics. In the present work, we developed two dielectrophoresis (DEP) based microfluidic devices, both embedded with three-dimensional (3D) microelectrodes. The first microfluidic device is used for the trajectory switching of cells. The second is a single microfluidic platform used for cell concentration, trapping of single, two cells (doublets) and three cell clusters (triplet). Red blood cell (RBC) trajectory switching to different outlets was achieved by applying 20 Vpp at 1 kHz to the 3D microelectrodes. RBC pre-concentration and trapping was realized by applying 10 Vpp at 5 MHz. During RBC trapping at 5% hematocrit, a trapping efficiency of up to 84% was achieved for doublets and triplets, and at 1% hematocrit, a 67% single cell trapping efficiency was obtained. RBC trajectory switching takes place in ∼2 to 4 s and cell trapping in ∼8 to 10 s following the application of electric field. We performed simulations on comparable 2D planar and 3D microelectrodes which confirmed that 3D microelectrodes support more uniform particle manipulation throughout the channel height direction.</abstract><pub>IOP Publishing</pub><doi>10.1088/2057-1976/ab268e</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2208-7496</orcidid><orcidid>https://orcid.org/0000-0002-8886-3649</orcidid><orcidid>https://orcid.org/0000-0003-0712-8106</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2057-1976 |
ispartof | Biomedical physics & engineering express, 2019-08, Vol.5 (5), p.55003 |
issn | 2057-1976 2057-1976 |
language | eng |
recordid | cdi_crossref_primary_10_1088_2057_1976_ab268e |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | 3D microelectrodes cell preconcentration cell trapping microfluidics |
title | Versatile microfluidic platform embedded with sidewall three-dimensional electrodes for cell manipulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T02%3A11%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Versatile%20microfluidic%20platform%20embedded%20with%20sidewall%20three-dimensional%20electrodes%20for%20cell%20manipulation&rft.jtitle=Biomedical%20physics%20&%20engineering%20express&rft.au=Puttaswamy,%20Srinivasu%20Valagerahally&rft.date=2019-08-07&rft.volume=5&rft.issue=5&rft.spage=55003&rft.pages=55003-&rft.issn=2057-1976&rft.eissn=2057-1976&rft.coden=NJOPFM&rft_id=info:doi/10.1088/2057-1976/ab268e&rft_dat=%3Ciop_cross%3Ebpexab268e%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |