Thermal stability of electron beam welded AlCoCrFeNi 2.1 alloy

AlCoCrFeNi 2.1 alloy, which belongs to the group of eutectic high-entropy alloys (EHEAs), possesses a combination of increased strength and ductility. It should retain these properties over a wide temperature range due to the high entropy effect of the system. At the same time, eutectic alloys are g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials research express 2024-09, Vol.11 (9), p.96527
Hauptverfasser: Roncak, Jan, Jozefovic, Patrik, Müller, Peter, Adam, Ondrej, Judas, Jakub, Dupak, Libor, Zavdoveev, Anatoliy, Jan, Vit, Zobac, Martin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 96527
container_title Materials research express
container_volume 11
creator Roncak, Jan
Jozefovic, Patrik
Müller, Peter
Adam, Ondrej
Judas, Jakub
Dupak, Libor
Zavdoveev, Anatoliy
Jan, Vit
Zobac, Martin
description AlCoCrFeNi 2.1 alloy, which belongs to the group of eutectic high-entropy alloys (EHEAs), possesses a combination of increased strength and ductility. It should retain these properties over a wide temperature range due to the high entropy effect of the system. At the same time, eutectic alloys are generally considered to have good castability, which increases the possibility of casting the alloy in larger volumes. One of the processes, that the alloy does not avoid when applied in industry, are the various joining techniques including electron beam welding. The weld area is often in a non-equilibrium state, which increases the risk of failure during operation. The paper therefore discusses the stability of the microstructure and mechanical properties of AlCoCrFeNi 2.1 alloy when exposed to short-term elevated temperatures. The material heated at 900 °C for 1 h in a vacuum furnace was observed using light and electron microscopy, analyzed for chemical and phase composition and finally subjected to HV0.1 hardness measurement and tensile strength test. The resulting condition was compared with the welded joint before exposure to elevated temperature. The microstructure of the weld was formed by a fine lamellar eutectic over the entire observed area. EBSD analysis confirmed the presence of a combination of FCC and BCC phases. The material hardness reached an average value of 370 HV0.1. Maximum tensile strength of the weld joint was measured at 944 MPa with the corresponding displacement of the crosshead 6.1 mm. The welded joint demonstrated sufficient stability and the ability to withstand short-term severe elevated temperature conditions.
doi_str_mv 10.1088/2053-1591/ad7ccc
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2053_1591_ad7ccc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_2053_1591_ad7ccc</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1088_2053_1591_ad7ccc3</originalsourceid><addsrcrecordid>eNqdzkELgjAcBfARBUl57_j_Auo2MfUShCSdOnkfc_6lxWyxCeG3Dymic6f3ePDgR8iO0ZjRokg4zdKIZSVLZJcrpRYk-E7Ln74mofc3SinPyzTj-4Acmiu6QRrwo2y10eMEtgc0qEZn79CiHOCJpsMOjqaylavxooHHDKQxdtqSVS-Nx_CTG0LrU1OdI-Ws9w578XB6kG4SjIqZKmaLmC3iTU3_uLwAEDpGiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal stability of electron beam welded AlCoCrFeNi 2.1 alloy</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><creator>Roncak, Jan ; Jozefovic, Patrik ; Müller, Peter ; Adam, Ondrej ; Judas, Jakub ; Dupak, Libor ; Zavdoveev, Anatoliy ; Jan, Vit ; Zobac, Martin</creator><creatorcontrib>Roncak, Jan ; Jozefovic, Patrik ; Müller, Peter ; Adam, Ondrej ; Judas, Jakub ; Dupak, Libor ; Zavdoveev, Anatoliy ; Jan, Vit ; Zobac, Martin</creatorcontrib><description>AlCoCrFeNi 2.1 alloy, which belongs to the group of eutectic high-entropy alloys (EHEAs), possesses a combination of increased strength and ductility. It should retain these properties over a wide temperature range due to the high entropy effect of the system. At the same time, eutectic alloys are generally considered to have good castability, which increases the possibility of casting the alloy in larger volumes. One of the processes, that the alloy does not avoid when applied in industry, are the various joining techniques including electron beam welding. The weld area is often in a non-equilibrium state, which increases the risk of failure during operation. The paper therefore discusses the stability of the microstructure and mechanical properties of AlCoCrFeNi 2.1 alloy when exposed to short-term elevated temperatures. The material heated at 900 °C for 1 h in a vacuum furnace was observed using light and electron microscopy, analyzed for chemical and phase composition and finally subjected to HV0.1 hardness measurement and tensile strength test. The resulting condition was compared with the welded joint before exposure to elevated temperature. The microstructure of the weld was formed by a fine lamellar eutectic over the entire observed area. EBSD analysis confirmed the presence of a combination of FCC and BCC phases. The material hardness reached an average value of 370 HV0.1. Maximum tensile strength of the weld joint was measured at 944 MPa with the corresponding displacement of the crosshead 6.1 mm. The welded joint demonstrated sufficient stability and the ability to withstand short-term severe elevated temperature conditions.</description><identifier>ISSN: 2053-1591</identifier><identifier>EISSN: 2053-1591</identifier><identifier>DOI: 10.1088/2053-1591/ad7ccc</identifier><language>eng</language><ispartof>Materials research express, 2024-09, Vol.11 (9), p.96527</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1088_2053_1591_ad7ccc3</cites><orcidid>0000-0002-3141-6776 ; 0000-0001-9301-4695 ; 0000-0002-3847-141X ; 0009-0004-8747-7668</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Roncak, Jan</creatorcontrib><creatorcontrib>Jozefovic, Patrik</creatorcontrib><creatorcontrib>Müller, Peter</creatorcontrib><creatorcontrib>Adam, Ondrej</creatorcontrib><creatorcontrib>Judas, Jakub</creatorcontrib><creatorcontrib>Dupak, Libor</creatorcontrib><creatorcontrib>Zavdoveev, Anatoliy</creatorcontrib><creatorcontrib>Jan, Vit</creatorcontrib><creatorcontrib>Zobac, Martin</creatorcontrib><title>Thermal stability of electron beam welded AlCoCrFeNi 2.1 alloy</title><title>Materials research express</title><description>AlCoCrFeNi 2.1 alloy, which belongs to the group of eutectic high-entropy alloys (EHEAs), possesses a combination of increased strength and ductility. It should retain these properties over a wide temperature range due to the high entropy effect of the system. At the same time, eutectic alloys are generally considered to have good castability, which increases the possibility of casting the alloy in larger volumes. One of the processes, that the alloy does not avoid when applied in industry, are the various joining techniques including electron beam welding. The weld area is often in a non-equilibrium state, which increases the risk of failure during operation. The paper therefore discusses the stability of the microstructure and mechanical properties of AlCoCrFeNi 2.1 alloy when exposed to short-term elevated temperatures. The material heated at 900 °C for 1 h in a vacuum furnace was observed using light and electron microscopy, analyzed for chemical and phase composition and finally subjected to HV0.1 hardness measurement and tensile strength test. The resulting condition was compared with the welded joint before exposure to elevated temperature. The microstructure of the weld was formed by a fine lamellar eutectic over the entire observed area. EBSD analysis confirmed the presence of a combination of FCC and BCC phases. The material hardness reached an average value of 370 HV0.1. Maximum tensile strength of the weld joint was measured at 944 MPa with the corresponding displacement of the crosshead 6.1 mm. The welded joint demonstrated sufficient stability and the ability to withstand short-term severe elevated temperature conditions.</description><issn>2053-1591</issn><issn>2053-1591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqdzkELgjAcBfARBUl57_j_Auo2MfUShCSdOnkfc_6lxWyxCeG3Dymic6f3ePDgR8iO0ZjRokg4zdKIZSVLZJcrpRYk-E7Ln74mofc3SinPyzTj-4Acmiu6QRrwo2y10eMEtgc0qEZn79CiHOCJpsMOjqaylavxooHHDKQxdtqSVS-Nx_CTG0LrU1OdI-Ws9w578XB6kG4SjIqZKmaLmC3iTU3_uLwAEDpGiw</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Roncak, Jan</creator><creator>Jozefovic, Patrik</creator><creator>Müller, Peter</creator><creator>Adam, Ondrej</creator><creator>Judas, Jakub</creator><creator>Dupak, Libor</creator><creator>Zavdoveev, Anatoliy</creator><creator>Jan, Vit</creator><creator>Zobac, Martin</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3141-6776</orcidid><orcidid>https://orcid.org/0000-0001-9301-4695</orcidid><orcidid>https://orcid.org/0000-0002-3847-141X</orcidid><orcidid>https://orcid.org/0009-0004-8747-7668</orcidid></search><sort><creationdate>20240901</creationdate><title>Thermal stability of electron beam welded AlCoCrFeNi 2.1 alloy</title><author>Roncak, Jan ; Jozefovic, Patrik ; Müller, Peter ; Adam, Ondrej ; Judas, Jakub ; Dupak, Libor ; Zavdoveev, Anatoliy ; Jan, Vit ; Zobac, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1088_2053_1591_ad7ccc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roncak, Jan</creatorcontrib><creatorcontrib>Jozefovic, Patrik</creatorcontrib><creatorcontrib>Müller, Peter</creatorcontrib><creatorcontrib>Adam, Ondrej</creatorcontrib><creatorcontrib>Judas, Jakub</creatorcontrib><creatorcontrib>Dupak, Libor</creatorcontrib><creatorcontrib>Zavdoveev, Anatoliy</creatorcontrib><creatorcontrib>Jan, Vit</creatorcontrib><creatorcontrib>Zobac, Martin</creatorcontrib><collection>CrossRef</collection><jtitle>Materials research express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roncak, Jan</au><au>Jozefovic, Patrik</au><au>Müller, Peter</au><au>Adam, Ondrej</au><au>Judas, Jakub</au><au>Dupak, Libor</au><au>Zavdoveev, Anatoliy</au><au>Jan, Vit</au><au>Zobac, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal stability of electron beam welded AlCoCrFeNi 2.1 alloy</atitle><jtitle>Materials research express</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>11</volume><issue>9</issue><spage>96527</spage><pages>96527-</pages><issn>2053-1591</issn><eissn>2053-1591</eissn><abstract>AlCoCrFeNi 2.1 alloy, which belongs to the group of eutectic high-entropy alloys (EHEAs), possesses a combination of increased strength and ductility. It should retain these properties over a wide temperature range due to the high entropy effect of the system. At the same time, eutectic alloys are generally considered to have good castability, which increases the possibility of casting the alloy in larger volumes. One of the processes, that the alloy does not avoid when applied in industry, are the various joining techniques including electron beam welding. The weld area is often in a non-equilibrium state, which increases the risk of failure during operation. The paper therefore discusses the stability of the microstructure and mechanical properties of AlCoCrFeNi 2.1 alloy when exposed to short-term elevated temperatures. The material heated at 900 °C for 1 h in a vacuum furnace was observed using light and electron microscopy, analyzed for chemical and phase composition and finally subjected to HV0.1 hardness measurement and tensile strength test. The resulting condition was compared with the welded joint before exposure to elevated temperature. The microstructure of the weld was formed by a fine lamellar eutectic over the entire observed area. EBSD analysis confirmed the presence of a combination of FCC and BCC phases. The material hardness reached an average value of 370 HV0.1. Maximum tensile strength of the weld joint was measured at 944 MPa with the corresponding displacement of the crosshead 6.1 mm. The welded joint demonstrated sufficient stability and the ability to withstand short-term severe elevated temperature conditions.</abstract><doi>10.1088/2053-1591/ad7ccc</doi><orcidid>https://orcid.org/0000-0002-3141-6776</orcidid><orcidid>https://orcid.org/0000-0001-9301-4695</orcidid><orcidid>https://orcid.org/0000-0002-3847-141X</orcidid><orcidid>https://orcid.org/0009-0004-8747-7668</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2053-1591
ispartof Materials research express, 2024-09, Vol.11 (9), p.96527
issn 2053-1591
2053-1591
language eng
recordid cdi_crossref_primary_10_1088_2053_1591_ad7ccc
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra
title Thermal stability of electron beam welded AlCoCrFeNi 2.1 alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A06%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20stability%20of%20electron%20beam%20welded%20AlCoCrFeNi%202.1%20alloy&rft.jtitle=Materials%20research%20express&rft.au=Roncak,%20Jan&rft.date=2024-09-01&rft.volume=11&rft.issue=9&rft.spage=96527&rft.pages=96527-&rft.issn=2053-1591&rft.eissn=2053-1591&rft_id=info:doi/10.1088/2053-1591/ad7ccc&rft_dat=%3Ccrossref%3E10_1088_2053_1591_ad7ccc%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true