The influence of hygrothermal aging on the hoop tensile strength of glass fiber wound polymer composites fabricated via filament winding technique
The study investigates the impact of moisture environment treatment, on the hoop tensile strength (HTS) of glass fiber-reinforced polymer (GFRP) composites, through hygrothermal aging. GFRP cylinders were fabricated with varied parameters—volume fraction, winding angle, and stacking sequences using...
Gespeichert in:
Veröffentlicht in: | Materials research express 2024-05, Vol.11 (5), p.55305 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 55305 |
container_title | Materials research express |
container_volume | 11 |
creator | Biradar, Srikumar Hiremath, Shivashankar H M, Vishwanatha Joladarashi, Sharnappa Kulkarni, S M |
description | The study investigates the impact of moisture environment treatment, on the hoop tensile strength (HTS) of glass fiber-reinforced polymer (GFRP) composites, through hygrothermal aging. GFRP cylinders were fabricated with varied parameters—volume fraction, winding angle, and stacking sequences using a filament winding machine. The fabricated samples are subjected to hygrothermal aging using seawater and tap water with oil at 80 °C for 1080 h (45 days). The HTS tests were performed on unaged and aged samples. There was a reduction in HTS for aged samples which is attributed to heat, seawater contamination, and oil. The highest and lowest HTS values recorded are 402.9 MPa and 118.3 MPa for unaged and tap water with oil-aged samples respectively. HTS in aged samples is compared with unaged samples. The study opens up avenues in identifying the best-suitable combination for retaining HTS under various aging conditions. |
doi_str_mv | 10.1088/2053-1591/ad4309 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2053_1591_ad4309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f41a9a32dd7449c59884eea5479b2375</doaj_id><sourcerecordid>3052145456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-38c7d1582c883040724a699a26c29810d448301612e44bbb6a82ee649333689a3</originalsourceid><addsrcrecordid>eNp9UU1v1TAQjBBIVKV3jpY4cOFRfyb2EVV8VKrEpZwtx94kfkrsYPtR3t_gF-MQVDggTusdz8zuaprmJcFvCZbymmLBDkQocm0cZ1g9aS4eoad_vZ83VzkfMca0U0zQ9qL5cT8B8mGYTxAsoDig6TymWCZIi5mRGX0YUQyoAmiKcUUFQvYzoFwShLFMm2ScTc5o8D0k9BBPwaE1zueldjYua8y-QP02ffLWFHDomzeVPZsFQkEPPrhtSAE7Bf_1BC-aZ4OZM1z9rpfNlw_v728-He4-f7y9eXd3sByTcmDSdo4ISa2UDHPcUW5apQxtLVWSYMd5xUlLKHDe931rJAVouWKMtVIZdtnc7r4umqNek19MOutovP4FxDRqk4q3M-iBE1MV1LmOc2WFkpIDGME71VPWier1avdaU6wn5KKP8ZRCXV8zLCjhgou2svDOsinmnGB4nEqw3oLUW1J6S0rvQVbJm13i4_rH8z_01_-gL-m7JkQLjYWo6-jVDewnqzer2w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3052145456</pqid></control><display><type>article</type><title>The influence of hygrothermal aging on the hoop tensile strength of glass fiber wound polymer composites fabricated via filament winding technique</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><creator>Biradar, Srikumar ; Hiremath, Shivashankar ; H M, Vishwanatha ; Joladarashi, Sharnappa ; Kulkarni, S M</creator><creatorcontrib>Biradar, Srikumar ; Hiremath, Shivashankar ; H M, Vishwanatha ; Joladarashi, Sharnappa ; Kulkarni, S M</creatorcontrib><description>The study investigates the impact of moisture environment treatment, on the hoop tensile strength (HTS) of glass fiber-reinforced polymer (GFRP) composites, through hygrothermal aging. GFRP cylinders were fabricated with varied parameters—volume fraction, winding angle, and stacking sequences using a filament winding machine. The fabricated samples are subjected to hygrothermal aging using seawater and tap water with oil at 80 °C for 1080 h (45 days). The HTS tests were performed on unaged and aged samples. There was a reduction in HTS for aged samples which is attributed to heat, seawater contamination, and oil. The highest and lowest HTS values recorded are 402.9 MPa and 118.3 MPa for unaged and tap water with oil-aged samples respectively. HTS in aged samples is compared with unaged samples. The study opens up avenues in identifying the best-suitable combination for retaining HTS under various aging conditions.</description><identifier>ISSN: 2053-1591</identifier><identifier>EISSN: 2053-1591</identifier><identifier>DOI: 10.1088/2053-1591/ad4309</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Drinking water ; Fiber composites ; Fiber reinforced polymers ; Filament winding ; filament wound ; GFRP ; Glass fiber reinforced plastics ; hoop tensile strength ; Hoops ; hygrothermal aging ; Polymer matrix composites ; Seawater ; split disk test ; Tensile strength ; Winding</subject><ispartof>Materials research express, 2024-05, Vol.11 (5), p.55305</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><rights>2024 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c401t-38c7d1582c883040724a699a26c29810d448301612e44bbb6a82ee649333689a3</cites><orcidid>0000-0001-7613-9832 ; 0000-0003-3045-9771 ; 0000-0002-9097-7696</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2053-1591/ad4309/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2100,27922,27923,38866,38888,53838,53865</link.rule.ids></links><search><creatorcontrib>Biradar, Srikumar</creatorcontrib><creatorcontrib>Hiremath, Shivashankar</creatorcontrib><creatorcontrib>H M, Vishwanatha</creatorcontrib><creatorcontrib>Joladarashi, Sharnappa</creatorcontrib><creatorcontrib>Kulkarni, S M</creatorcontrib><title>The influence of hygrothermal aging on the hoop tensile strength of glass fiber wound polymer composites fabricated via filament winding technique</title><title>Materials research express</title><addtitle>MRX</addtitle><addtitle>Mater. Res. Express</addtitle><description>The study investigates the impact of moisture environment treatment, on the hoop tensile strength (HTS) of glass fiber-reinforced polymer (GFRP) composites, through hygrothermal aging. GFRP cylinders were fabricated with varied parameters—volume fraction, winding angle, and stacking sequences using a filament winding machine. The fabricated samples are subjected to hygrothermal aging using seawater and tap water with oil at 80 °C for 1080 h (45 days). The HTS tests were performed on unaged and aged samples. There was a reduction in HTS for aged samples which is attributed to heat, seawater contamination, and oil. The highest and lowest HTS values recorded are 402.9 MPa and 118.3 MPa for unaged and tap water with oil-aged samples respectively. HTS in aged samples is compared with unaged samples. The study opens up avenues in identifying the best-suitable combination for retaining HTS under various aging conditions.</description><subject>Drinking water</subject><subject>Fiber composites</subject><subject>Fiber reinforced polymers</subject><subject>Filament winding</subject><subject>filament wound</subject><subject>GFRP</subject><subject>Glass fiber reinforced plastics</subject><subject>hoop tensile strength</subject><subject>Hoops</subject><subject>hygrothermal aging</subject><subject>Polymer matrix composites</subject><subject>Seawater</subject><subject>split disk test</subject><subject>Tensile strength</subject><subject>Winding</subject><issn>2053-1591</issn><issn>2053-1591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNp9UU1v1TAQjBBIVKV3jpY4cOFRfyb2EVV8VKrEpZwtx94kfkrsYPtR3t_gF-MQVDggTusdz8zuaprmJcFvCZbymmLBDkQocm0cZ1g9aS4eoad_vZ83VzkfMca0U0zQ9qL5cT8B8mGYTxAsoDig6TymWCZIi5mRGX0YUQyoAmiKcUUFQvYzoFwShLFMm2ScTc5o8D0k9BBPwaE1zueldjYua8y-QP02ffLWFHDomzeVPZsFQkEPPrhtSAE7Bf_1BC-aZ4OZM1z9rpfNlw_v728-He4-f7y9eXd3sByTcmDSdo4ISa2UDHPcUW5apQxtLVWSYMd5xUlLKHDe931rJAVouWKMtVIZdtnc7r4umqNek19MOutovP4FxDRqk4q3M-iBE1MV1LmOc2WFkpIDGME71VPWier1avdaU6wn5KKP8ZRCXV8zLCjhgou2svDOsinmnGB4nEqw3oLUW1J6S0rvQVbJm13i4_rH8z_01_-gL-m7JkQLjYWo6-jVDewnqzer2w</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Biradar, Srikumar</creator><creator>Hiremath, Shivashankar</creator><creator>H M, Vishwanatha</creator><creator>Joladarashi, Sharnappa</creator><creator>Kulkarni, S M</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7613-9832</orcidid><orcidid>https://orcid.org/0000-0003-3045-9771</orcidid><orcidid>https://orcid.org/0000-0002-9097-7696</orcidid></search><sort><creationdate>20240501</creationdate><title>The influence of hygrothermal aging on the hoop tensile strength of glass fiber wound polymer composites fabricated via filament winding technique</title><author>Biradar, Srikumar ; Hiremath, Shivashankar ; H M, Vishwanatha ; Joladarashi, Sharnappa ; Kulkarni, S M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-38c7d1582c883040724a699a26c29810d448301612e44bbb6a82ee649333689a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Drinking water</topic><topic>Fiber composites</topic><topic>Fiber reinforced polymers</topic><topic>Filament winding</topic><topic>filament wound</topic><topic>GFRP</topic><topic>Glass fiber reinforced plastics</topic><topic>hoop tensile strength</topic><topic>Hoops</topic><topic>hygrothermal aging</topic><topic>Polymer matrix composites</topic><topic>Seawater</topic><topic>split disk test</topic><topic>Tensile strength</topic><topic>Winding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biradar, Srikumar</creatorcontrib><creatorcontrib>Hiremath, Shivashankar</creatorcontrib><creatorcontrib>H M, Vishwanatha</creatorcontrib><creatorcontrib>Joladarashi, Sharnappa</creatorcontrib><creatorcontrib>Kulkarni, S M</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Materials research express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biradar, Srikumar</au><au>Hiremath, Shivashankar</au><au>H M, Vishwanatha</au><au>Joladarashi, Sharnappa</au><au>Kulkarni, S M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The influence of hygrothermal aging on the hoop tensile strength of glass fiber wound polymer composites fabricated via filament winding technique</atitle><jtitle>Materials research express</jtitle><stitle>MRX</stitle><addtitle>Mater. Res. Express</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>11</volume><issue>5</issue><spage>55305</spage><pages>55305-</pages><issn>2053-1591</issn><eissn>2053-1591</eissn><abstract>The study investigates the impact of moisture environment treatment, on the hoop tensile strength (HTS) of glass fiber-reinforced polymer (GFRP) composites, through hygrothermal aging. GFRP cylinders were fabricated with varied parameters—volume fraction, winding angle, and stacking sequences using a filament winding machine. The fabricated samples are subjected to hygrothermal aging using seawater and tap water with oil at 80 °C for 1080 h (45 days). The HTS tests were performed on unaged and aged samples. There was a reduction in HTS for aged samples which is attributed to heat, seawater contamination, and oil. The highest and lowest HTS values recorded are 402.9 MPa and 118.3 MPa for unaged and tap water with oil-aged samples respectively. HTS in aged samples is compared with unaged samples. The study opens up avenues in identifying the best-suitable combination for retaining HTS under various aging conditions.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2053-1591/ad4309</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7613-9832</orcidid><orcidid>https://orcid.org/0000-0003-3045-9771</orcidid><orcidid>https://orcid.org/0000-0002-9097-7696</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2053-1591 |
ispartof | Materials research express, 2024-05, Vol.11 (5), p.55305 |
issn | 2053-1591 2053-1591 |
language | eng |
recordid | cdi_crossref_primary_10_1088_2053_1591_ad4309 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IOPscience extra |
subjects | Drinking water Fiber composites Fiber reinforced polymers Filament winding filament wound GFRP Glass fiber reinforced plastics hoop tensile strength Hoops hygrothermal aging Polymer matrix composites Seawater split disk test Tensile strength Winding |
title | The influence of hygrothermal aging on the hoop tensile strength of glass fiber wound polymer composites fabricated via filament winding technique |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T10%3A34%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20influence%20of%20hygrothermal%20aging%20on%20the%20hoop%20tensile%20strength%20of%20glass%20fiber%20wound%20polymer%20composites%20fabricated%20via%20filament%20winding%20technique&rft.jtitle=Materials%20research%20express&rft.au=Biradar,%20Srikumar&rft.date=2024-05-01&rft.volume=11&rft.issue=5&rft.spage=55305&rft.pages=55305-&rft.issn=2053-1591&rft.eissn=2053-1591&rft_id=info:doi/10.1088/2053-1591/ad4309&rft_dat=%3Cproquest_cross%3E3052145456%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3052145456&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_f41a9a32dd7449c59884eea5479b2375&rfr_iscdi=true |