Synthesis of solvent-free conductive and flexible cellulose-carbon nanohorn sheets and their application as a water vapor sensor
Carbon nanohorns (CNHs) are mixed with cellulose to make freestanding thin-film conductive sheets. CNHs, at different ratios (5, 10, 25, 50 wt%), form composites with cellulose (hydroxyethylcellulose). Freestanding cellulose-carbon nanohorn (CCN) sheets were fabricated using a 100 m-thick metal bar...
Gespeichert in:
Veröffentlicht in: | Materials research express 2020-05, Vol.7 (5), p.56402 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 56402 |
container_title | Materials research express |
container_volume | 7 |
creator | Paneer Selvam, Karthik Nakagawa, Tomohiro Marui, Tatsuki Inoue, Hirotaka Nishikawa, Takeshi Hayashi, Yasuhiko |
description | Carbon nanohorns (CNHs) are mixed with cellulose to make freestanding thin-film conductive sheets. CNHs, at different ratios (5, 10, 25, 50 wt%), form composites with cellulose (hydroxyethylcellulose). Freestanding cellulose-carbon nanohorn (CCN) sheets were fabricated using a 100 m-thick metal bar coater. Surfactants or any other chemical treatments to tailor the surface properties of CNHs were avoided to obtain composite sheets from pristine CNHs and cellulose. Utilizing the hygroscopic property of hydroxyethylcellulose and the electrical conductivity of CNHs paved a path to perform this experiment. The synthesis technique is simple, and the fabrication and drying of the sheets were effortless. As the loading concentration of CNH increased, the resistance, flexibility, and strength of the CCN composite sheets decreased. The maximum loading concentration possible to obtain a freestanding CCN sheet is 50 wt%. The resistance of the maximum loading concentration of CNH was 53 k . The response of the CCN sheets to water vapor was 4 s and recover time was 13 s, and it is feasible to obtain a response for different concentrations of water vapor. High-resolution transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, resistance measurement, tensile strength measurement, and thermogravimetric analysis were used to investigate the mechanical, morphological, electrical, and chemical properties of the CCN sheets. |
doi_str_mv | 10.1088/2053-1591/ab89dc |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2053_1591_ab89dc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7eb083de74d749ceba2ee6ab82dea43e</doaj_id><sourcerecordid>2583419897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-1af7822403923e081505224f207552d31e4d8cdff7ab027e42b2727f00beef5a3</originalsourceid><addsrcrecordid>eNp9kb1vFDEQxVcIJKKQntISEhVL_HneLVEEIVKkFEBtzdpjzqeNvdi-I-nyp-PLokCBqGy_-c2zx6_rXjP6ntFhOOdUiZ6pkZ3DNIzOPutOnqTnf-1fdmel7CilXI9C8c1J9_DlPtYtllBI8qSk-YCx9j4jEpui29saDkggOuJnvAvT3HSc5_2cCvYW8pQiiRDTNuVIyhaxlke6eYZMYFnmYKGGRkErkJ9QMZMDLCmTgrGk_Kp74WEuePZ7Pe2-ffr49eJzf31zeXXx4bq3cmS1Z-D1wLmkYuQC6cAUVe3oOdVKcScYSjdY572GqU2Hkk9cc-0pnRC9AnHaXa2-LsHOLDncQr43CYJ5FFL-biDXYGc0Gic6CIdaOi1HixNwxE37We4QpMDm9Wb1WnL6scdSzS7tc2zPN1wNQrJxGHWj6ErZnErJ6J9uZdQcYzPHXMwxF7PG1lrerS0hLX88_4O__Qd-m--MNspQtZGUm8V58QsuXqhr</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583419897</pqid></control><display><type>article</type><title>Synthesis of solvent-free conductive and flexible cellulose-carbon nanohorn sheets and their application as a water vapor sensor</title><source>DOAJ Directory of Open Access Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Paneer Selvam, Karthik ; Nakagawa, Tomohiro ; Marui, Tatsuki ; Inoue, Hirotaka ; Nishikawa, Takeshi ; Hayashi, Yasuhiko</creator><creatorcontrib>Paneer Selvam, Karthik ; Nakagawa, Tomohiro ; Marui, Tatsuki ; Inoue, Hirotaka ; Nishikawa, Takeshi ; Hayashi, Yasuhiko</creatorcontrib><description>Carbon nanohorns (CNHs) are mixed with cellulose to make freestanding thin-film conductive sheets. CNHs, at different ratios (5, 10, 25, 50 wt%), form composites with cellulose (hydroxyethylcellulose). Freestanding cellulose-carbon nanohorn (CCN) sheets were fabricated using a 100 m-thick metal bar coater. Surfactants or any other chemical treatments to tailor the surface properties of CNHs were avoided to obtain composite sheets from pristine CNHs and cellulose. Utilizing the hygroscopic property of hydroxyethylcellulose and the electrical conductivity of CNHs paved a path to perform this experiment. The synthesis technique is simple, and the fabrication and drying of the sheets were effortless. As the loading concentration of CNH increased, the resistance, flexibility, and strength of the CCN composite sheets decreased. The maximum loading concentration possible to obtain a freestanding CCN sheet is 50 wt%. The resistance of the maximum loading concentration of CNH was 53 k . The response of the CCN sheets to water vapor was 4 s and recover time was 13 s, and it is feasible to obtain a response for different concentrations of water vapor. High-resolution transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, resistance measurement, tensile strength measurement, and thermogravimetric analysis were used to investigate the mechanical, morphological, electrical, and chemical properties of the CCN sheets.</description><identifier>ISSN: 2053-1591</identifier><identifier>EISSN: 2053-1591</identifier><identifier>DOI: 10.1088/2053-1591/ab89dc</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Carbon ; carbon nanohorns ; Cellulose ; Chemical properties ; Chemical treatment ; conductive sheets ; Electrical resistivity ; Fourier transforms ; High resolution electron microscopy ; Hydroxyethyl celluloses ; Infrared analysis ; Infrared spectroscopy ; Load resistance ; Microscopy ; Raman spectroscopy ; Sheets ; Spectroscopic analysis ; Spectrum analysis ; Surface properties ; Synthesis ; Tensile strength ; Thermogravimetric analysis ; vapor sensor ; Water vapor</subject><ispartof>Materials research express, 2020-05, Vol.7 (5), p.56402</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-1af7822403923e081505224f207552d31e4d8cdff7ab027e42b2727f00beef5a3</citedby><cites>FETCH-LOGICAL-c491t-1af7822403923e081505224f207552d31e4d8cdff7ab027e42b2727f00beef5a3</cites><orcidid>0000-0002-4113-5548 ; 0000-0002-3881-497X ; 0000-0003-1927-6755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2053-1591/ab89dc/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2102,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Paneer Selvam, Karthik</creatorcontrib><creatorcontrib>Nakagawa, Tomohiro</creatorcontrib><creatorcontrib>Marui, Tatsuki</creatorcontrib><creatorcontrib>Inoue, Hirotaka</creatorcontrib><creatorcontrib>Nishikawa, Takeshi</creatorcontrib><creatorcontrib>Hayashi, Yasuhiko</creatorcontrib><title>Synthesis of solvent-free conductive and flexible cellulose-carbon nanohorn sheets and their application as a water vapor sensor</title><title>Materials research express</title><addtitle>MRX</addtitle><addtitle>Mater. Res. Express</addtitle><description>Carbon nanohorns (CNHs) are mixed with cellulose to make freestanding thin-film conductive sheets. CNHs, at different ratios (5, 10, 25, 50 wt%), form composites with cellulose (hydroxyethylcellulose). Freestanding cellulose-carbon nanohorn (CCN) sheets were fabricated using a 100 m-thick metal bar coater. Surfactants or any other chemical treatments to tailor the surface properties of CNHs were avoided to obtain composite sheets from pristine CNHs and cellulose. Utilizing the hygroscopic property of hydroxyethylcellulose and the electrical conductivity of CNHs paved a path to perform this experiment. The synthesis technique is simple, and the fabrication and drying of the sheets were effortless. As the loading concentration of CNH increased, the resistance, flexibility, and strength of the CCN composite sheets decreased. The maximum loading concentration possible to obtain a freestanding CCN sheet is 50 wt%. The resistance of the maximum loading concentration of CNH was 53 k . The response of the CCN sheets to water vapor was 4 s and recover time was 13 s, and it is feasible to obtain a response for different concentrations of water vapor. High-resolution transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, resistance measurement, tensile strength measurement, and thermogravimetric analysis were used to investigate the mechanical, morphological, electrical, and chemical properties of the CCN sheets.</description><subject>Carbon</subject><subject>carbon nanohorns</subject><subject>Cellulose</subject><subject>Chemical properties</subject><subject>Chemical treatment</subject><subject>conductive sheets</subject><subject>Electrical resistivity</subject><subject>Fourier transforms</subject><subject>High resolution electron microscopy</subject><subject>Hydroxyethyl celluloses</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Load resistance</subject><subject>Microscopy</subject><subject>Raman spectroscopy</subject><subject>Sheets</subject><subject>Spectroscopic analysis</subject><subject>Spectrum analysis</subject><subject>Surface properties</subject><subject>Synthesis</subject><subject>Tensile strength</subject><subject>Thermogravimetric analysis</subject><subject>vapor sensor</subject><subject>Water vapor</subject><issn>2053-1591</issn><issn>2053-1591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNp9kb1vFDEQxVcIJKKQntISEhVL_HneLVEEIVKkFEBtzdpjzqeNvdi-I-nyp-PLokCBqGy_-c2zx6_rXjP6ntFhOOdUiZ6pkZ3DNIzOPutOnqTnf-1fdmel7CilXI9C8c1J9_DlPtYtllBI8qSk-YCx9j4jEpui29saDkggOuJnvAvT3HSc5_2cCvYW8pQiiRDTNuVIyhaxlke6eYZMYFnmYKGGRkErkJ9QMZMDLCmTgrGk_Kp74WEuePZ7Pe2-ffr49eJzf31zeXXx4bq3cmS1Z-D1wLmkYuQC6cAUVe3oOdVKcScYSjdY572GqU2Hkk9cc-0pnRC9AnHaXa2-LsHOLDncQr43CYJ5FFL-biDXYGc0Gic6CIdaOi1HixNwxE37We4QpMDm9Wb1WnL6scdSzS7tc2zPN1wNQrJxGHWj6ErZnErJ6J9uZdQcYzPHXMwxF7PG1lrerS0hLX88_4O__Qd-m--MNspQtZGUm8V58QsuXqhr</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Paneer Selvam, Karthik</creator><creator>Nakagawa, Tomohiro</creator><creator>Marui, Tatsuki</creator><creator>Inoue, Hirotaka</creator><creator>Nishikawa, Takeshi</creator><creator>Hayashi, Yasuhiko</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4113-5548</orcidid><orcidid>https://orcid.org/0000-0002-3881-497X</orcidid><orcidid>https://orcid.org/0000-0003-1927-6755</orcidid></search><sort><creationdate>20200501</creationdate><title>Synthesis of solvent-free conductive and flexible cellulose-carbon nanohorn sheets and their application as a water vapor sensor</title><author>Paneer Selvam, Karthik ; Nakagawa, Tomohiro ; Marui, Tatsuki ; Inoue, Hirotaka ; Nishikawa, Takeshi ; Hayashi, Yasuhiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-1af7822403923e081505224f207552d31e4d8cdff7ab027e42b2727f00beef5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon</topic><topic>carbon nanohorns</topic><topic>Cellulose</topic><topic>Chemical properties</topic><topic>Chemical treatment</topic><topic>conductive sheets</topic><topic>Electrical resistivity</topic><topic>Fourier transforms</topic><topic>High resolution electron microscopy</topic><topic>Hydroxyethyl celluloses</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Load resistance</topic><topic>Microscopy</topic><topic>Raman spectroscopy</topic><topic>Sheets</topic><topic>Spectroscopic analysis</topic><topic>Spectrum analysis</topic><topic>Surface properties</topic><topic>Synthesis</topic><topic>Tensile strength</topic><topic>Thermogravimetric analysis</topic><topic>vapor sensor</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paneer Selvam, Karthik</creatorcontrib><creatorcontrib>Nakagawa, Tomohiro</creatorcontrib><creatorcontrib>Marui, Tatsuki</creatorcontrib><creatorcontrib>Inoue, Hirotaka</creatorcontrib><creatorcontrib>Nishikawa, Takeshi</creatorcontrib><creatorcontrib>Hayashi, Yasuhiko</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Materials research express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paneer Selvam, Karthik</au><au>Nakagawa, Tomohiro</au><au>Marui, Tatsuki</au><au>Inoue, Hirotaka</au><au>Nishikawa, Takeshi</au><au>Hayashi, Yasuhiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of solvent-free conductive and flexible cellulose-carbon nanohorn sheets and their application as a water vapor sensor</atitle><jtitle>Materials research express</jtitle><stitle>MRX</stitle><addtitle>Mater. Res. Express</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>7</volume><issue>5</issue><spage>56402</spage><pages>56402-</pages><issn>2053-1591</issn><eissn>2053-1591</eissn><abstract>Carbon nanohorns (CNHs) are mixed with cellulose to make freestanding thin-film conductive sheets. CNHs, at different ratios (5, 10, 25, 50 wt%), form composites with cellulose (hydroxyethylcellulose). Freestanding cellulose-carbon nanohorn (CCN) sheets were fabricated using a 100 m-thick metal bar coater. Surfactants or any other chemical treatments to tailor the surface properties of CNHs were avoided to obtain composite sheets from pristine CNHs and cellulose. Utilizing the hygroscopic property of hydroxyethylcellulose and the electrical conductivity of CNHs paved a path to perform this experiment. The synthesis technique is simple, and the fabrication and drying of the sheets were effortless. As the loading concentration of CNH increased, the resistance, flexibility, and strength of the CCN composite sheets decreased. The maximum loading concentration possible to obtain a freestanding CCN sheet is 50 wt%. The resistance of the maximum loading concentration of CNH was 53 k . The response of the CCN sheets to water vapor was 4 s and recover time was 13 s, and it is feasible to obtain a response for different concentrations of water vapor. High-resolution transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, resistance measurement, tensile strength measurement, and thermogravimetric analysis were used to investigate the mechanical, morphological, electrical, and chemical properties of the CCN sheets.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2053-1591/ab89dc</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4113-5548</orcidid><orcidid>https://orcid.org/0000-0002-3881-497X</orcidid><orcidid>https://orcid.org/0000-0003-1927-6755</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2053-1591 |
ispartof | Materials research express, 2020-05, Vol.7 (5), p.56402 |
issn | 2053-1591 2053-1591 |
language | eng |
recordid | cdi_crossref_primary_10_1088_2053_1591_ab89dc |
source | DOAJ Directory of Open Access Journals; Institute of Physics Open Access Journal Titles; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals |
subjects | Carbon carbon nanohorns Cellulose Chemical properties Chemical treatment conductive sheets Electrical resistivity Fourier transforms High resolution electron microscopy Hydroxyethyl celluloses Infrared analysis Infrared spectroscopy Load resistance Microscopy Raman spectroscopy Sheets Spectroscopic analysis Spectrum analysis Surface properties Synthesis Tensile strength Thermogravimetric analysis vapor sensor Water vapor |
title | Synthesis of solvent-free conductive and flexible cellulose-carbon nanohorn sheets and their application as a water vapor sensor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A18%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20solvent-free%20conductive%20and%20flexible%20cellulose-carbon%20nanohorn%20sheets%20and%20their%20application%20as%20a%20water%20vapor%20sensor&rft.jtitle=Materials%20research%20express&rft.au=Paneer%20Selvam,%20Karthik&rft.date=2020-05-01&rft.volume=7&rft.issue=5&rft.spage=56402&rft.pages=56402-&rft.issn=2053-1591&rft.eissn=2053-1591&rft_id=info:doi/10.1088/2053-1591/ab89dc&rft_dat=%3Cproquest_cross%3E2583419897%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583419897&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_7eb083de74d749ceba2ee6ab82dea43e&rfr_iscdi=true |