Enhanced thermal conductivity of form-stable phase change materials using carbon nanofiber-expanded graphite hybrid structure
Inorganic hydrated salt phase change materials (PCM) play a vital role in field of thermal energy storage and temperature control because of their high latent heat. However, inherent low conductivity of hydrated salt PCMs limits greatly their efficien cy in practical application. In this study, a hy...
Gespeichert in:
Veröffentlicht in: | Materials research express 2019-11, Vol.6 (12), p.125503 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 125503 |
container_title | Materials research express |
container_volume | 6 |
creator | Yu, Kunyang Jin, Bo Liu, Yushi Li, Longshi |
description | Inorganic hydrated salt phase change materials (PCM) play a vital role in field of thermal energy storage and temperature control because of their high latent heat. However, inherent low conductivity of hydrated salt PCMs limits greatly their efficien cy in practical application. In this study, a hydrated salt (disodium hydrogen phosphate dodecahydrate)/carbon nanofiber-expanded graphite hybrid form-stable composite PCM (DSP/CNF-EG) is prepared using a physical mixing and the impregnation method. The enhanced thermal conductivity is achieved by the fill of CNF into the low thermal conductivity regions of EG. The thermal conductivity of DSP/CNF-EG is increased by 3.69 times compared with that of pure DSP, which is as high as 2.486 W m−1 k−1. Differential scanning calorimetry (DSC) indicates the outstanding latent heat (208.9 J g−1) and the suitable phase change temperature (33.7 °C) of the DSP/CNF-EG composite. Scanning electron microscopy (SEM) demonstrates that the thermal conductive reinforcements are formed by the addition of CNF. Moreover, Raman spectra results suggest that the hydrated salt is packaged well within the CNF-EG hybrid structure. Furthermore, the prepared DSP/CNF-EG composite maintains a good thermal stability after 200 thermal cycles. The obtained results indicate the DSP/CNF-EG composite is an excellent candidate used for thermal energy storage in building. |
doi_str_mv | 10.1088/2053-1591/ab52ae |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2053_1591_ab52ae</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>mrxab52ae</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-647cae85b055d1b3f57163880c48a9de4613fd7e1af6748f3ff7cda56219d5c3</originalsourceid><addsrcrecordid>eNp9kMtLAzEQxoMoWGrvHnPz4tpks9nHUUp9QMFL72E2j25KN1mSrNiD_7tbKuJBhIEZhu_7ZvghdEvJAyV1vcwJZxnlDV1Cy3PQF2j2s7r8NV-jRYx7QkheNYzn5Qx9rl0HTmqFU6dDDwcsvVOjTPbdpiP2Bhsf-iwmaA8aDx1EjeXk2GncQ9LBwiHiMVq3wxJC6x124LyxrQ6Z_hjAqSl6F2DobNK4O7bBKhxTmC6MQd-gKzMF6MV3n6Pt03q7esk2b8-vq8dNJhnNU1YWlQRd85ZwrmjLDK9oyeqayKKGRumipMyoSlMwZVXUhhlTSQW8zGmjuGRzRM6xMvgYgzZiCLaHcBSUiBNAcSIkToTEGeBkuT9brB_E3o_BTf_9J7_7Q96HD1EKmk_FOWFiUIZ9AbDUgsM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhanced thermal conductivity of form-stable phase change materials using carbon nanofiber-expanded graphite hybrid structure</title><source>IOP Publishing Journals</source><source>IOPscience extra</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Yu, Kunyang ; Jin, Bo ; Liu, Yushi ; Li, Longshi</creator><creatorcontrib>Yu, Kunyang ; Jin, Bo ; Liu, Yushi ; Li, Longshi</creatorcontrib><description>Inorganic hydrated salt phase change materials (PCM) play a vital role in field of thermal energy storage and temperature control because of their high latent heat. However, inherent low conductivity of hydrated salt PCMs limits greatly their efficien cy in practical application. In this study, a hydrated salt (disodium hydrogen phosphate dodecahydrate)/carbon nanofiber-expanded graphite hybrid form-stable composite PCM (DSP/CNF-EG) is prepared using a physical mixing and the impregnation method. The enhanced thermal conductivity is achieved by the fill of CNF into the low thermal conductivity regions of EG. The thermal conductivity of DSP/CNF-EG is increased by 3.69 times compared with that of pure DSP, which is as high as 2.486 W m−1 k−1. Differential scanning calorimetry (DSC) indicates the outstanding latent heat (208.9 J g−1) and the suitable phase change temperature (33.7 °C) of the DSP/CNF-EG composite. Scanning electron microscopy (SEM) demonstrates that the thermal conductive reinforcements are formed by the addition of CNF. Moreover, Raman spectra results suggest that the hydrated salt is packaged well within the CNF-EG hybrid structure. Furthermore, the prepared DSP/CNF-EG composite maintains a good thermal stability after 200 thermal cycles. The obtained results indicate the DSP/CNF-EG composite is an excellent candidate used for thermal energy storage in building.</description><identifier>ISSN: 2053-1591</identifier><identifier>EISSN: 2053-1591</identifier><identifier>DOI: 10.1088/2053-1591/ab52ae</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>carbon nanofiber ; expanded graphite ; latent heat ; phase change materials ; thermal conductivity</subject><ispartof>Materials research express, 2019-11, Vol.6 (12), p.125503</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-647cae85b055d1b3f57163880c48a9de4613fd7e1af6748f3ff7cda56219d5c3</citedby><cites>FETCH-LOGICAL-c312t-647cae85b055d1b3f57163880c48a9de4613fd7e1af6748f3ff7cda56219d5c3</cites><orcidid>0000-0003-2462-0821</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2053-1591/ab52ae/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,53815,53821,53868</link.rule.ids></links><search><creatorcontrib>Yu, Kunyang</creatorcontrib><creatorcontrib>Jin, Bo</creatorcontrib><creatorcontrib>Liu, Yushi</creatorcontrib><creatorcontrib>Li, Longshi</creatorcontrib><title>Enhanced thermal conductivity of form-stable phase change materials using carbon nanofiber-expanded graphite hybrid structure</title><title>Materials research express</title><addtitle>MRX</addtitle><addtitle>Mater. Res. Express</addtitle><description>Inorganic hydrated salt phase change materials (PCM) play a vital role in field of thermal energy storage and temperature control because of their high latent heat. However, inherent low conductivity of hydrated salt PCMs limits greatly their efficien cy in practical application. In this study, a hydrated salt (disodium hydrogen phosphate dodecahydrate)/carbon nanofiber-expanded graphite hybrid form-stable composite PCM (DSP/CNF-EG) is prepared using a physical mixing and the impregnation method. The enhanced thermal conductivity is achieved by the fill of CNF into the low thermal conductivity regions of EG. The thermal conductivity of DSP/CNF-EG is increased by 3.69 times compared with that of pure DSP, which is as high as 2.486 W m−1 k−1. Differential scanning calorimetry (DSC) indicates the outstanding latent heat (208.9 J g−1) and the suitable phase change temperature (33.7 °C) of the DSP/CNF-EG composite. Scanning electron microscopy (SEM) demonstrates that the thermal conductive reinforcements are formed by the addition of CNF. Moreover, Raman spectra results suggest that the hydrated salt is packaged well within the CNF-EG hybrid structure. Furthermore, the prepared DSP/CNF-EG composite maintains a good thermal stability after 200 thermal cycles. The obtained results indicate the DSP/CNF-EG composite is an excellent candidate used for thermal energy storage in building.</description><subject>carbon nanofiber</subject><subject>expanded graphite</subject><subject>latent heat</subject><subject>phase change materials</subject><subject>thermal conductivity</subject><issn>2053-1591</issn><issn>2053-1591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtLAzEQxoMoWGrvHnPz4tpks9nHUUp9QMFL72E2j25KN1mSrNiD_7tbKuJBhIEZhu_7ZvghdEvJAyV1vcwJZxnlDV1Cy3PQF2j2s7r8NV-jRYx7QkheNYzn5Qx9rl0HTmqFU6dDDwcsvVOjTPbdpiP2Bhsf-iwmaA8aDx1EjeXk2GncQ9LBwiHiMVq3wxJC6x124LyxrQ6Z_hjAqSl6F2DobNK4O7bBKhxTmC6MQd-gKzMF6MV3n6Pt03q7esk2b8-vq8dNJhnNU1YWlQRd85ZwrmjLDK9oyeqayKKGRumipMyoSlMwZVXUhhlTSQW8zGmjuGRzRM6xMvgYgzZiCLaHcBSUiBNAcSIkToTEGeBkuT9brB_E3o_BTf_9J7_7Q96HD1EKmk_FOWFiUIZ9AbDUgsM</recordid><startdate>20191113</startdate><enddate>20191113</enddate><creator>Yu, Kunyang</creator><creator>Jin, Bo</creator><creator>Liu, Yushi</creator><creator>Li, Longshi</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2462-0821</orcidid></search><sort><creationdate>20191113</creationdate><title>Enhanced thermal conductivity of form-stable phase change materials using carbon nanofiber-expanded graphite hybrid structure</title><author>Yu, Kunyang ; Jin, Bo ; Liu, Yushi ; Li, Longshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-647cae85b055d1b3f57163880c48a9de4613fd7e1af6748f3ff7cda56219d5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>carbon nanofiber</topic><topic>expanded graphite</topic><topic>latent heat</topic><topic>phase change materials</topic><topic>thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Kunyang</creatorcontrib><creatorcontrib>Jin, Bo</creatorcontrib><creatorcontrib>Liu, Yushi</creatorcontrib><creatorcontrib>Li, Longshi</creatorcontrib><collection>CrossRef</collection><jtitle>Materials research express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Kunyang</au><au>Jin, Bo</au><au>Liu, Yushi</au><au>Li, Longshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced thermal conductivity of form-stable phase change materials using carbon nanofiber-expanded graphite hybrid structure</atitle><jtitle>Materials research express</jtitle><stitle>MRX</stitle><addtitle>Mater. Res. Express</addtitle><date>2019-11-13</date><risdate>2019</risdate><volume>6</volume><issue>12</issue><spage>125503</spage><pages>125503-</pages><issn>2053-1591</issn><eissn>2053-1591</eissn><abstract>Inorganic hydrated salt phase change materials (PCM) play a vital role in field of thermal energy storage and temperature control because of their high latent heat. However, inherent low conductivity of hydrated salt PCMs limits greatly their efficien cy in practical application. In this study, a hydrated salt (disodium hydrogen phosphate dodecahydrate)/carbon nanofiber-expanded graphite hybrid form-stable composite PCM (DSP/CNF-EG) is prepared using a physical mixing and the impregnation method. The enhanced thermal conductivity is achieved by the fill of CNF into the low thermal conductivity regions of EG. The thermal conductivity of DSP/CNF-EG is increased by 3.69 times compared with that of pure DSP, which is as high as 2.486 W m−1 k−1. Differential scanning calorimetry (DSC) indicates the outstanding latent heat (208.9 J g−1) and the suitable phase change temperature (33.7 °C) of the DSP/CNF-EG composite. Scanning electron microscopy (SEM) demonstrates that the thermal conductive reinforcements are formed by the addition of CNF. Moreover, Raman spectra results suggest that the hydrated salt is packaged well within the CNF-EG hybrid structure. Furthermore, the prepared DSP/CNF-EG composite maintains a good thermal stability after 200 thermal cycles. The obtained results indicate the DSP/CNF-EG composite is an excellent candidate used for thermal energy storage in building.</abstract><pub>IOP Publishing</pub><doi>10.1088/2053-1591/ab52ae</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2462-0821</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2053-1591 |
ispartof | Materials research express, 2019-11, Vol.6 (12), p.125503 |
issn | 2053-1591 2053-1591 |
language | eng |
recordid | cdi_crossref_primary_10_1088_2053_1591_ab52ae |
source | IOP Publishing Journals; IOPscience extra; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | carbon nanofiber expanded graphite latent heat phase change materials thermal conductivity |
title | Enhanced thermal conductivity of form-stable phase change materials using carbon nanofiber-expanded graphite hybrid structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T06%3A14%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20thermal%20conductivity%20of%20form-stable%20phase%20change%20materials%20using%20carbon%20nanofiber-expanded%20graphite%20hybrid%20structure&rft.jtitle=Materials%20research%20express&rft.au=Yu,%20Kunyang&rft.date=2019-11-13&rft.volume=6&rft.issue=12&rft.spage=125503&rft.pages=125503-&rft.issn=2053-1591&rft.eissn=2053-1591&rft_id=info:doi/10.1088/2053-1591/ab52ae&rft_dat=%3Ciop_cross%3Emrxab52ae%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |