An investigation on microstructure evolution and mechanical properties of cryogenic steel rebars under different cooling conditions

In this study, industrial trial production of the microstructure evolutions and resultant mechanical properties and finite element model of the temperature variation in the cryogenic temperature rebar subjected to the TempCore processes were presented. The microstructure of tested steel rebar is com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials research express 2019-08, Vol.6 (10), p.106592
Hauptverfasser: Pan, Hongbo, Cao, Jinghua, Fu, Bin, Liu, Weiming, Shen, Xiaohui, Yan, Jun, Dai, Yongjuan, Wan, Yong, Wang, Huiting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 106592
container_title Materials research express
container_volume 6
creator Pan, Hongbo
Cao, Jinghua
Fu, Bin
Liu, Weiming
Shen, Xiaohui
Yan, Jun
Dai, Yongjuan
Wan, Yong
Wang, Huiting
description In this study, industrial trial production of the microstructure evolutions and resultant mechanical properties and finite element model of the temperature variation in the cryogenic temperature rebar subjected to the TempCore processes were presented. The microstructure of tested steel rebar is composed of ferrite, pearlite and bainite when the cooling rate is less than or equal to 5 °C s−1. The pearlite disappears when the cooling rate is 10 °C s−1, and the microstructure is composed of granular bainite and a small amount of ferrite. The microstructure consists of martensite and bainite at cooling rate of 20°. Compared with the tested steel rebar with water flow rate of 450 m3 h−1, the tested steel rebar with water flow rate of 100 m3 h−1 has an optimum mechanical strength and a higher uniform elongation at room temperature, and has a higher NSR(notch sensitivity ratio) at −165 °C. The uniform elongation is 7.3% at room temperature and NSR is 1.14 at −165 °C. The ductile-brittle transition temperature of the tested steel rebar with water flow of 100 m3 h−1 is about −30 °C, while which of 450 m3 h−1 is 0 °C. The impact energy of the tested steel bar with water flow of 100 m3 h−1 is 2 ∼ 3 times that of 450 m3 h−1 at or below 0 °C, which is mainly due to its ultrafine acicular ferrite and bainite containing high dislocation density and sub-grains.
doi_str_mv 10.1088/2053-1591/ab3d54
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2053_1591_ab3d54</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>mrxab3d54</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-9dd864f1b50df00a1a591eb99a9ca63f7cf058be701be431b38eb67ffcdab5253</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJg0d495ubFtcmm2Y9jKX5BwYueQz4mNWU3WZLdYs_-cXetiAeFgTfMm_eYeQhdUXJLSVUtcsJZRnlNF1Ixw5cnaPYzOv3Vn6N5SjtCSF7WjOfFDH2sPHZ-D6l3W9m74PFYrdMxpD4Ouh8iYNiHZvjipDe4Bf0mvdOywV0MHcTeQcLBYh0PYQsjg1MP0OAISsaEB28gYuOshQi-xzqExvntiN64yTVdojMrmwTzb7xAr_d3L-vHbPP88LRebTLNaN5ntTFVsbRUcWIsIZLK8SNQdS1rLQtmS20JrxSUhCpYMqpYBaoordVGKp5zdoHI0Xf6LkWwoouulfEgKBFTjmIKSkxBiWOOo-T6KHGhE7swRD8eKNr4LoqjqOB1Ljpjx82bPzb_Nf4EAEOGJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An investigation on microstructure evolution and mechanical properties of cryogenic steel rebars under different cooling conditions</title><source>Institute of Physics IOPscience extra</source><source>Institute of Physics Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Pan, Hongbo ; Cao, Jinghua ; Fu, Bin ; Liu, Weiming ; Shen, Xiaohui ; Yan, Jun ; Dai, Yongjuan ; Wan, Yong ; Wang, Huiting</creator><creatorcontrib>Pan, Hongbo ; Cao, Jinghua ; Fu, Bin ; Liu, Weiming ; Shen, Xiaohui ; Yan, Jun ; Dai, Yongjuan ; Wan, Yong ; Wang, Huiting</creatorcontrib><description>In this study, industrial trial production of the microstructure evolutions and resultant mechanical properties and finite element model of the temperature variation in the cryogenic temperature rebar subjected to the TempCore processes were presented. The microstructure of tested steel rebar is composed of ferrite, pearlite and bainite when the cooling rate is less than or equal to 5 °C s−1. The pearlite disappears when the cooling rate is 10 °C s−1, and the microstructure is composed of granular bainite and a small amount of ferrite. The microstructure consists of martensite and bainite at cooling rate of 20°. Compared with the tested steel rebar with water flow rate of 450 m3 h−1, the tested steel rebar with water flow rate of 100 m3 h−1 has an optimum mechanical strength and a higher uniform elongation at room temperature, and has a higher NSR(notch sensitivity ratio) at −165 °C. The uniform elongation is 7.3% at room temperature and NSR is 1.14 at −165 °C. The ductile-brittle transition temperature of the tested steel rebar with water flow of 100 m3 h−1 is about −30 °C, while which of 450 m3 h−1 is 0 °C. The impact energy of the tested steel bar with water flow of 100 m3 h−1 is 2 ∼ 3 times that of 450 m3 h−1 at or below 0 °C, which is mainly due to its ultrafine acicular ferrite and bainite containing high dislocation density and sub-grains.</description><identifier>ISSN: 2053-1591</identifier><identifier>EISSN: 2053-1591</identifier><identifier>DOI: 10.1088/2053-1591/ab3d54</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>cryogenic temperature ; mechanical properties ; microstructure evolution ; steel rebars ; TempCore process</subject><ispartof>Materials research express, 2019-08, Vol.6 (10), p.106592</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-9dd864f1b50df00a1a591eb99a9ca63f7cf058be701be431b38eb67ffcdab5253</citedby><cites>FETCH-LOGICAL-c312t-9dd864f1b50df00a1a591eb99a9ca63f7cf058be701be431b38eb67ffcdab5253</cites><orcidid>0000-0001-8136-2473 ; 0000-0002-9541-8674</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2053-1591/ab3d54/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,53815,53821,53868</link.rule.ids></links><search><creatorcontrib>Pan, Hongbo</creatorcontrib><creatorcontrib>Cao, Jinghua</creatorcontrib><creatorcontrib>Fu, Bin</creatorcontrib><creatorcontrib>Liu, Weiming</creatorcontrib><creatorcontrib>Shen, Xiaohui</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><creatorcontrib>Dai, Yongjuan</creatorcontrib><creatorcontrib>Wan, Yong</creatorcontrib><creatorcontrib>Wang, Huiting</creatorcontrib><title>An investigation on microstructure evolution and mechanical properties of cryogenic steel rebars under different cooling conditions</title><title>Materials research express</title><addtitle>MRX</addtitle><addtitle>Mater. Res. Express</addtitle><description>In this study, industrial trial production of the microstructure evolutions and resultant mechanical properties and finite element model of the temperature variation in the cryogenic temperature rebar subjected to the TempCore processes were presented. The microstructure of tested steel rebar is composed of ferrite, pearlite and bainite when the cooling rate is less than or equal to 5 °C s−1. The pearlite disappears when the cooling rate is 10 °C s−1, and the microstructure is composed of granular bainite and a small amount of ferrite. The microstructure consists of martensite and bainite at cooling rate of 20°. Compared with the tested steel rebar with water flow rate of 450 m3 h−1, the tested steel rebar with water flow rate of 100 m3 h−1 has an optimum mechanical strength and a higher uniform elongation at room temperature, and has a higher NSR(notch sensitivity ratio) at −165 °C. The uniform elongation is 7.3% at room temperature and NSR is 1.14 at −165 °C. The ductile-brittle transition temperature of the tested steel rebar with water flow of 100 m3 h−1 is about −30 °C, while which of 450 m3 h−1 is 0 °C. The impact energy of the tested steel bar with water flow of 100 m3 h−1 is 2 ∼ 3 times that of 450 m3 h−1 at or below 0 °C, which is mainly due to its ultrafine acicular ferrite and bainite containing high dislocation density and sub-grains.</description><subject>cryogenic temperature</subject><subject>mechanical properties</subject><subject>microstructure evolution</subject><subject>steel rebars</subject><subject>TempCore process</subject><issn>2053-1591</issn><issn>2053-1591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJg0d495ubFtcmm2Y9jKX5BwYueQz4mNWU3WZLdYs_-cXetiAeFgTfMm_eYeQhdUXJLSVUtcsJZRnlNF1Ixw5cnaPYzOv3Vn6N5SjtCSF7WjOfFDH2sPHZ-D6l3W9m74PFYrdMxpD4Ouh8iYNiHZvjipDe4Bf0mvdOywV0MHcTeQcLBYh0PYQsjg1MP0OAISsaEB28gYuOshQi-xzqExvntiN64yTVdojMrmwTzb7xAr_d3L-vHbPP88LRebTLNaN5ntTFVsbRUcWIsIZLK8SNQdS1rLQtmS20JrxSUhCpYMqpYBaoordVGKp5zdoHI0Xf6LkWwoouulfEgKBFTjmIKSkxBiWOOo-T6KHGhE7swRD8eKNr4LoqjqOB1Ljpjx82bPzb_Nf4EAEOGJw</recordid><startdate>20190830</startdate><enddate>20190830</enddate><creator>Pan, Hongbo</creator><creator>Cao, Jinghua</creator><creator>Fu, Bin</creator><creator>Liu, Weiming</creator><creator>Shen, Xiaohui</creator><creator>Yan, Jun</creator><creator>Dai, Yongjuan</creator><creator>Wan, Yong</creator><creator>Wang, Huiting</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8136-2473</orcidid><orcidid>https://orcid.org/0000-0002-9541-8674</orcidid></search><sort><creationdate>20190830</creationdate><title>An investigation on microstructure evolution and mechanical properties of cryogenic steel rebars under different cooling conditions</title><author>Pan, Hongbo ; Cao, Jinghua ; Fu, Bin ; Liu, Weiming ; Shen, Xiaohui ; Yan, Jun ; Dai, Yongjuan ; Wan, Yong ; Wang, Huiting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-9dd864f1b50df00a1a591eb99a9ca63f7cf058be701be431b38eb67ffcdab5253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>cryogenic temperature</topic><topic>mechanical properties</topic><topic>microstructure evolution</topic><topic>steel rebars</topic><topic>TempCore process</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Hongbo</creatorcontrib><creatorcontrib>Cao, Jinghua</creatorcontrib><creatorcontrib>Fu, Bin</creatorcontrib><creatorcontrib>Liu, Weiming</creatorcontrib><creatorcontrib>Shen, Xiaohui</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><creatorcontrib>Dai, Yongjuan</creatorcontrib><creatorcontrib>Wan, Yong</creatorcontrib><creatorcontrib>Wang, Huiting</creatorcontrib><collection>CrossRef</collection><jtitle>Materials research express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Hongbo</au><au>Cao, Jinghua</au><au>Fu, Bin</au><au>Liu, Weiming</au><au>Shen, Xiaohui</au><au>Yan, Jun</au><au>Dai, Yongjuan</au><au>Wan, Yong</au><au>Wang, Huiting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An investigation on microstructure evolution and mechanical properties of cryogenic steel rebars under different cooling conditions</atitle><jtitle>Materials research express</jtitle><stitle>MRX</stitle><addtitle>Mater. Res. Express</addtitle><date>2019-08-30</date><risdate>2019</risdate><volume>6</volume><issue>10</issue><spage>106592</spage><pages>106592-</pages><issn>2053-1591</issn><eissn>2053-1591</eissn><abstract>In this study, industrial trial production of the microstructure evolutions and resultant mechanical properties and finite element model of the temperature variation in the cryogenic temperature rebar subjected to the TempCore processes were presented. The microstructure of tested steel rebar is composed of ferrite, pearlite and bainite when the cooling rate is less than or equal to 5 °C s−1. The pearlite disappears when the cooling rate is 10 °C s−1, and the microstructure is composed of granular bainite and a small amount of ferrite. The microstructure consists of martensite and bainite at cooling rate of 20°. Compared with the tested steel rebar with water flow rate of 450 m3 h−1, the tested steel rebar with water flow rate of 100 m3 h−1 has an optimum mechanical strength and a higher uniform elongation at room temperature, and has a higher NSR(notch sensitivity ratio) at −165 °C. The uniform elongation is 7.3% at room temperature and NSR is 1.14 at −165 °C. The ductile-brittle transition temperature of the tested steel rebar with water flow of 100 m3 h−1 is about −30 °C, while which of 450 m3 h−1 is 0 °C. The impact energy of the tested steel bar with water flow of 100 m3 h−1 is 2 ∼ 3 times that of 450 m3 h−1 at or below 0 °C, which is mainly due to its ultrafine acicular ferrite and bainite containing high dislocation density and sub-grains.</abstract><pub>IOP Publishing</pub><doi>10.1088/2053-1591/ab3d54</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8136-2473</orcidid><orcidid>https://orcid.org/0000-0002-9541-8674</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2053-1591
ispartof Materials research express, 2019-08, Vol.6 (10), p.106592
issn 2053-1591
2053-1591
language eng
recordid cdi_crossref_primary_10_1088_2053_1591_ab3d54
source Institute of Physics IOPscience extra; Institute of Physics Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects cryogenic temperature
mechanical properties
microstructure evolution
steel rebars
TempCore process
title An investigation on microstructure evolution and mechanical properties of cryogenic steel rebars under different cooling conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A07%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20investigation%20on%20microstructure%20evolution%20and%20mechanical%20properties%20of%20cryogenic%20steel%20rebars%20under%20different%20cooling%20conditions&rft.jtitle=Materials%20research%20express&rft.au=Pan,%20Hongbo&rft.date=2019-08-30&rft.volume=6&rft.issue=10&rft.spage=106592&rft.pages=106592-&rft.issn=2053-1591&rft.eissn=2053-1591&rft_id=info:doi/10.1088/2053-1591/ab3d54&rft_dat=%3Ciop_cross%3Emrxab3d54%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true