Mapping domain junctions using 4D-STEM: toward controlled properties of epitaxially grown transition metal dichalcogenide monolayers

Epitaxial growth has become a promising route to achieve highly crystalline continuous two-dimensional layers. However, high-quality layer production with expected electrical properties is still challenging due to the defects induced by the coalescence between imperfectly aligned domains. In order t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2d materials 2023-10, Vol.10 (4), p.45024
Hauptverfasser: Dosenovic, Djordje, Dechamps, Samuel, Vergnaud, Celine, Pasko, Sergej, Krotkus, Simonas, Heuken, Michael, Genovese, Luigi, Rouviere, Jean-Luc, den Hertog, Martien, Le Van-Jodin, Lucie, Jamet, Matthieu, Marty, Alain, Okuno, Hanako
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 45024
container_title 2d materials
container_volume 10
creator Dosenovic, Djordje
Dechamps, Samuel
Vergnaud, Celine
Pasko, Sergej
Krotkus, Simonas
Heuken, Michael
Genovese, Luigi
Rouviere, Jean-Luc
den Hertog, Martien
Le Van-Jodin, Lucie
Jamet, Matthieu
Marty, Alain
Okuno, Hanako
description Epitaxial growth has become a promising route to achieve highly crystalline continuous two-dimensional layers. However, high-quality layer production with expected electrical properties is still challenging due to the defects induced by the coalescence between imperfectly aligned domains. In order to control their intrinsic properties at the device scale, the synthesized materials should be described as a patchwork of coalesced domains. Here, we report multi-scale and multi-structural analysis on highly oriented epitaxial WS 2 and WSe 2 monolayers using scanning transmission electron microscopy (STEM) techniques. Characteristic domain junctions are first identified and classified based on the detailed atomic structure analysis using aberration corrected STEM imaging. Mapping orientation, polar direction and phase at the micrometer scale using four-dimensional STEM enabled to access the density and the distribution of the specific domain junctions. Our results validate a readily applicable process for the study of highly oriented epitaxial transition metal dichalcogenides, providing an overview of synthesized materials from large scale down to atomic scale with multiple structural information.
doi_str_mv 10.1088/2053-1583/acf3f9
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2053_1583_acf3f9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04291553v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-f1272963db2ab6c5d860c0cf9f9f5a7c2ee56024b3cda903a94618f5d75a9083</originalsourceid><addsrcrecordid>eNp1UE1LxDAQLaKgrN495iaC1aRpuq030fUDVjy49zCbjzVLmpSk67p3f7gpFfGgzGFmHu89Zl6WnRJ8SXBdXxWY0Zywml6B0FQ3e9nRD7T_az7MTmJcY4zJtKIlqY6yz2foOuNWSPoWjEPrjRO98S6iTRzg8i5_Xcyer1HvtxAkEt71wVurJOqC71TojYrIa6Q608OHAWt3aBX81qE-gItmMEOt6sEiacQbWOFXyhmpUOudt7BTIR5nBxpsVCfffZIt7meL28d8_vLwdHszzwUtqz7XpJgWTUXlsoBlJZisKyyw0E0qBlNRKMUqXJRLKiQ0mEJTVqTWTE5ZWms6yc5H23QF74JpIey4B8Mfb-Z8wHBZNIQx-k4SF49cEXyMQekfAcF8yJwPofIhVD5mniRno8T4jq_9Jrj0Cy9kO0jKZM7SbbyTOjEv_mD-a_wFA0aSjQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mapping domain junctions using 4D-STEM: toward controlled properties of epitaxially grown transition metal dichalcogenide monolayers</title><source>Institute of Physics IOPscience extra</source><source>Institute of Physics Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Dosenovic, Djordje ; Dechamps, Samuel ; Vergnaud, Celine ; Pasko, Sergej ; Krotkus, Simonas ; Heuken, Michael ; Genovese, Luigi ; Rouviere, Jean-Luc ; den Hertog, Martien ; Le Van-Jodin, Lucie ; Jamet, Matthieu ; Marty, Alain ; Okuno, Hanako</creator><creatorcontrib>Dosenovic, Djordje ; Dechamps, Samuel ; Vergnaud, Celine ; Pasko, Sergej ; Krotkus, Simonas ; Heuken, Michael ; Genovese, Luigi ; Rouviere, Jean-Luc ; den Hertog, Martien ; Le Van-Jodin, Lucie ; Jamet, Matthieu ; Marty, Alain ; Okuno, Hanako</creatorcontrib><description>Epitaxial growth has become a promising route to achieve highly crystalline continuous two-dimensional layers. However, high-quality layer production with expected electrical properties is still challenging due to the defects induced by the coalescence between imperfectly aligned domains. In order to control their intrinsic properties at the device scale, the synthesized materials should be described as a patchwork of coalesced domains. Here, we report multi-scale and multi-structural analysis on highly oriented epitaxial WS 2 and WSe 2 monolayers using scanning transmission electron microscopy (STEM) techniques. Characteristic domain junctions are first identified and classified based on the detailed atomic structure analysis using aberration corrected STEM imaging. Mapping orientation, polar direction and phase at the micrometer scale using four-dimensional STEM enabled to access the density and the distribution of the specific domain junctions. Our results validate a readily applicable process for the study of highly oriented epitaxial transition metal dichalcogenides, providing an overview of synthesized materials from large scale down to atomic scale with multiple structural information.</description><identifier>ISSN: 2053-1583</identifier><identifier>EISSN: 2053-1583</identifier><identifier>DOI: 10.1088/2053-1583/acf3f9</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>atomic defects ; domain boundary ; epitaxial growth ; four-dimensional scanning transmission electron microscopy ; Physics ; transition metal dichalcogenides</subject><ispartof>2d materials, 2023-10, Vol.10 (4), p.45024</ispartof><rights>2023 IOP Publishing Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-f1272963db2ab6c5d860c0cf9f9f5a7c2ee56024b3cda903a94618f5d75a9083</citedby><cites>FETCH-LOGICAL-c346t-f1272963db2ab6c5d860c0cf9f9f5a7c2ee56024b3cda903a94618f5d75a9083</cites><orcidid>0000-0001-6718-106X ; 0009-0000-8531-8904 ; 0000-0002-8247-4677 ; 0000-0001-6336-1805 ; 0000-0002-3072-1381 ; 0000-0001-9739-9692 ; 0000-0003-1747-0247 ; 0000-0003-0781-9249 ; 0000-0001-5709-6945 ; 0000-0002-1657-7926 ; 0000-0002-7688-9526</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2053-1583/acf3f9/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27903,27904,38847,53819,53825,53872</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04291553$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dosenovic, Djordje</creatorcontrib><creatorcontrib>Dechamps, Samuel</creatorcontrib><creatorcontrib>Vergnaud, Celine</creatorcontrib><creatorcontrib>Pasko, Sergej</creatorcontrib><creatorcontrib>Krotkus, Simonas</creatorcontrib><creatorcontrib>Heuken, Michael</creatorcontrib><creatorcontrib>Genovese, Luigi</creatorcontrib><creatorcontrib>Rouviere, Jean-Luc</creatorcontrib><creatorcontrib>den Hertog, Martien</creatorcontrib><creatorcontrib>Le Van-Jodin, Lucie</creatorcontrib><creatorcontrib>Jamet, Matthieu</creatorcontrib><creatorcontrib>Marty, Alain</creatorcontrib><creatorcontrib>Okuno, Hanako</creatorcontrib><title>Mapping domain junctions using 4D-STEM: toward controlled properties of epitaxially grown transition metal dichalcogenide monolayers</title><title>2d materials</title><addtitle>2DM</addtitle><addtitle>2D Mater</addtitle><description>Epitaxial growth has become a promising route to achieve highly crystalline continuous two-dimensional layers. However, high-quality layer production with expected electrical properties is still challenging due to the defects induced by the coalescence between imperfectly aligned domains. In order to control their intrinsic properties at the device scale, the synthesized materials should be described as a patchwork of coalesced domains. Here, we report multi-scale and multi-structural analysis on highly oriented epitaxial WS 2 and WSe 2 monolayers using scanning transmission electron microscopy (STEM) techniques. Characteristic domain junctions are first identified and classified based on the detailed atomic structure analysis using aberration corrected STEM imaging. Mapping orientation, polar direction and phase at the micrometer scale using four-dimensional STEM enabled to access the density and the distribution of the specific domain junctions. Our results validate a readily applicable process for the study of highly oriented epitaxial transition metal dichalcogenides, providing an overview of synthesized materials from large scale down to atomic scale with multiple structural information.</description><subject>atomic defects</subject><subject>domain boundary</subject><subject>epitaxial growth</subject><subject>four-dimensional scanning transmission electron microscopy</subject><subject>Physics</subject><subject>transition metal dichalcogenides</subject><issn>2053-1583</issn><issn>2053-1583</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LxDAQLaKgrN495iaC1aRpuq030fUDVjy49zCbjzVLmpSk67p3f7gpFfGgzGFmHu89Zl6WnRJ8SXBdXxWY0Zywml6B0FQ3e9nRD7T_az7MTmJcY4zJtKIlqY6yz2foOuNWSPoWjEPrjRO98S6iTRzg8i5_Xcyer1HvtxAkEt71wVurJOqC71TojYrIa6Q608OHAWt3aBX81qE-gItmMEOt6sEiacQbWOFXyhmpUOudt7BTIR5nBxpsVCfffZIt7meL28d8_vLwdHszzwUtqz7XpJgWTUXlsoBlJZisKyyw0E0qBlNRKMUqXJRLKiQ0mEJTVqTWTE5ZWms6yc5H23QF74JpIey4B8Mfb-Z8wHBZNIQx-k4SF49cEXyMQekfAcF8yJwPofIhVD5mniRno8T4jq_9Jrj0Cy9kO0jKZM7SbbyTOjEv_mD-a_wFA0aSjQ</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Dosenovic, Djordje</creator><creator>Dechamps, Samuel</creator><creator>Vergnaud, Celine</creator><creator>Pasko, Sergej</creator><creator>Krotkus, Simonas</creator><creator>Heuken, Michael</creator><creator>Genovese, Luigi</creator><creator>Rouviere, Jean-Luc</creator><creator>den Hertog, Martien</creator><creator>Le Van-Jodin, Lucie</creator><creator>Jamet, Matthieu</creator><creator>Marty, Alain</creator><creator>Okuno, Hanako</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6718-106X</orcidid><orcidid>https://orcid.org/0009-0000-8531-8904</orcidid><orcidid>https://orcid.org/0000-0002-8247-4677</orcidid><orcidid>https://orcid.org/0000-0001-6336-1805</orcidid><orcidid>https://orcid.org/0000-0002-3072-1381</orcidid><orcidid>https://orcid.org/0000-0001-9739-9692</orcidid><orcidid>https://orcid.org/0000-0003-1747-0247</orcidid><orcidid>https://orcid.org/0000-0003-0781-9249</orcidid><orcidid>https://orcid.org/0000-0001-5709-6945</orcidid><orcidid>https://orcid.org/0000-0002-1657-7926</orcidid><orcidid>https://orcid.org/0000-0002-7688-9526</orcidid></search><sort><creationdate>20231001</creationdate><title>Mapping domain junctions using 4D-STEM: toward controlled properties of epitaxially grown transition metal dichalcogenide monolayers</title><author>Dosenovic, Djordje ; Dechamps, Samuel ; Vergnaud, Celine ; Pasko, Sergej ; Krotkus, Simonas ; Heuken, Michael ; Genovese, Luigi ; Rouviere, Jean-Luc ; den Hertog, Martien ; Le Van-Jodin, Lucie ; Jamet, Matthieu ; Marty, Alain ; Okuno, Hanako</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-f1272963db2ab6c5d860c0cf9f9f5a7c2ee56024b3cda903a94618f5d75a9083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>atomic defects</topic><topic>domain boundary</topic><topic>epitaxial growth</topic><topic>four-dimensional scanning transmission electron microscopy</topic><topic>Physics</topic><topic>transition metal dichalcogenides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dosenovic, Djordje</creatorcontrib><creatorcontrib>Dechamps, Samuel</creatorcontrib><creatorcontrib>Vergnaud, Celine</creatorcontrib><creatorcontrib>Pasko, Sergej</creatorcontrib><creatorcontrib>Krotkus, Simonas</creatorcontrib><creatorcontrib>Heuken, Michael</creatorcontrib><creatorcontrib>Genovese, Luigi</creatorcontrib><creatorcontrib>Rouviere, Jean-Luc</creatorcontrib><creatorcontrib>den Hertog, Martien</creatorcontrib><creatorcontrib>Le Van-Jodin, Lucie</creatorcontrib><creatorcontrib>Jamet, Matthieu</creatorcontrib><creatorcontrib>Marty, Alain</creatorcontrib><creatorcontrib>Okuno, Hanako</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>2d materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dosenovic, Djordje</au><au>Dechamps, Samuel</au><au>Vergnaud, Celine</au><au>Pasko, Sergej</au><au>Krotkus, Simonas</au><au>Heuken, Michael</au><au>Genovese, Luigi</au><au>Rouviere, Jean-Luc</au><au>den Hertog, Martien</au><au>Le Van-Jodin, Lucie</au><au>Jamet, Matthieu</au><au>Marty, Alain</au><au>Okuno, Hanako</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping domain junctions using 4D-STEM: toward controlled properties of epitaxially grown transition metal dichalcogenide monolayers</atitle><jtitle>2d materials</jtitle><stitle>2DM</stitle><addtitle>2D Mater</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>10</volume><issue>4</issue><spage>45024</spage><pages>45024-</pages><issn>2053-1583</issn><eissn>2053-1583</eissn><abstract>Epitaxial growth has become a promising route to achieve highly crystalline continuous two-dimensional layers. However, high-quality layer production with expected electrical properties is still challenging due to the defects induced by the coalescence between imperfectly aligned domains. In order to control their intrinsic properties at the device scale, the synthesized materials should be described as a patchwork of coalesced domains. Here, we report multi-scale and multi-structural analysis on highly oriented epitaxial WS 2 and WSe 2 monolayers using scanning transmission electron microscopy (STEM) techniques. Characteristic domain junctions are first identified and classified based on the detailed atomic structure analysis using aberration corrected STEM imaging. Mapping orientation, polar direction and phase at the micrometer scale using four-dimensional STEM enabled to access the density and the distribution of the specific domain junctions. Our results validate a readily applicable process for the study of highly oriented epitaxial transition metal dichalcogenides, providing an overview of synthesized materials from large scale down to atomic scale with multiple structural information.</abstract><pub>IOP Publishing</pub><doi>10.1088/2053-1583/acf3f9</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6718-106X</orcidid><orcidid>https://orcid.org/0009-0000-8531-8904</orcidid><orcidid>https://orcid.org/0000-0002-8247-4677</orcidid><orcidid>https://orcid.org/0000-0001-6336-1805</orcidid><orcidid>https://orcid.org/0000-0002-3072-1381</orcidid><orcidid>https://orcid.org/0000-0001-9739-9692</orcidid><orcidid>https://orcid.org/0000-0003-1747-0247</orcidid><orcidid>https://orcid.org/0000-0003-0781-9249</orcidid><orcidid>https://orcid.org/0000-0001-5709-6945</orcidid><orcidid>https://orcid.org/0000-0002-1657-7926</orcidid><orcidid>https://orcid.org/0000-0002-7688-9526</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2053-1583
ispartof 2d materials, 2023-10, Vol.10 (4), p.45024
issn 2053-1583
2053-1583
language eng
recordid cdi_crossref_primary_10_1088_2053_1583_acf3f9
source Institute of Physics IOPscience extra; Institute of Physics Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects atomic defects
domain boundary
epitaxial growth
four-dimensional scanning transmission electron microscopy
Physics
transition metal dichalcogenides
title Mapping domain junctions using 4D-STEM: toward controlled properties of epitaxially grown transition metal dichalcogenide monolayers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A22%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20domain%20junctions%20using%204D-STEM:%20toward%20controlled%20properties%20of%20epitaxially%20grown%20transition%20metal%20dichalcogenide%20monolayers&rft.jtitle=2d%20materials&rft.au=Dosenovic,%20Djordje&rft.date=2023-10-01&rft.volume=10&rft.issue=4&rft.spage=45024&rft.pages=45024-&rft.issn=2053-1583&rft.eissn=2053-1583&rft_id=info:doi/10.1088/2053-1583/acf3f9&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04291553v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true