Mapping domain junctions using 4D-STEM: toward controlled properties of epitaxially grown transition metal dichalcogenide monolayers
Epitaxial growth has become a promising route to achieve highly crystalline continuous two-dimensional layers. However, high-quality layer production with expected electrical properties is still challenging due to the defects induced by the coalescence between imperfectly aligned domains. In order t...
Gespeichert in:
Veröffentlicht in: | 2d materials 2023-10, Vol.10 (4), p.45024 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 45024 |
container_title | 2d materials |
container_volume | 10 |
creator | Dosenovic, Djordje Dechamps, Samuel Vergnaud, Celine Pasko, Sergej Krotkus, Simonas Heuken, Michael Genovese, Luigi Rouviere, Jean-Luc den Hertog, Martien Le Van-Jodin, Lucie Jamet, Matthieu Marty, Alain Okuno, Hanako |
description | Epitaxial growth has become a promising route to achieve highly crystalline continuous two-dimensional layers. However, high-quality layer production with expected electrical properties is still challenging due to the defects induced by the coalescence between imperfectly aligned domains. In order to control their intrinsic properties at the device scale, the synthesized materials should be described as a patchwork of coalesced domains. Here, we report multi-scale and multi-structural analysis on highly oriented epitaxial WS
2
and WSe
2
monolayers using scanning transmission electron microscopy (STEM) techniques. Characteristic domain junctions are first identified and classified based on the detailed atomic structure analysis using aberration corrected STEM imaging. Mapping orientation, polar direction and phase at the micrometer scale using four-dimensional STEM enabled to access the density and the distribution of the specific domain junctions. Our results validate a readily applicable process for the study of highly oriented epitaxial transition metal dichalcogenides, providing an overview of synthesized materials from large scale down to atomic scale with multiple structural information. |
doi_str_mv | 10.1088/2053-1583/acf3f9 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2053_1583_acf3f9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04291553v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-f1272963db2ab6c5d860c0cf9f9f5a7c2ee56024b3cda903a94618f5d75a9083</originalsourceid><addsrcrecordid>eNp1UE1LxDAQLaKgrN495iaC1aRpuq030fUDVjy49zCbjzVLmpSk67p3f7gpFfGgzGFmHu89Zl6WnRJ8SXBdXxWY0Zywml6B0FQ3e9nRD7T_az7MTmJcY4zJtKIlqY6yz2foOuNWSPoWjEPrjRO98S6iTRzg8i5_Xcyer1HvtxAkEt71wVurJOqC71TojYrIa6Q608OHAWt3aBX81qE-gItmMEOt6sEiacQbWOFXyhmpUOudt7BTIR5nBxpsVCfffZIt7meL28d8_vLwdHszzwUtqz7XpJgWTUXlsoBlJZisKyyw0E0qBlNRKMUqXJRLKiQ0mEJTVqTWTE5ZWms6yc5H23QF74JpIey4B8Mfb-Z8wHBZNIQx-k4SF49cEXyMQekfAcF8yJwPofIhVD5mniRno8T4jq_9Jrj0Cy9kO0jKZM7SbbyTOjEv_mD-a_wFA0aSjQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mapping domain junctions using 4D-STEM: toward controlled properties of epitaxially grown transition metal dichalcogenide monolayers</title><source>Institute of Physics IOPscience extra</source><source>Institute of Physics Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Dosenovic, Djordje ; Dechamps, Samuel ; Vergnaud, Celine ; Pasko, Sergej ; Krotkus, Simonas ; Heuken, Michael ; Genovese, Luigi ; Rouviere, Jean-Luc ; den Hertog, Martien ; Le Van-Jodin, Lucie ; Jamet, Matthieu ; Marty, Alain ; Okuno, Hanako</creator><creatorcontrib>Dosenovic, Djordje ; Dechamps, Samuel ; Vergnaud, Celine ; Pasko, Sergej ; Krotkus, Simonas ; Heuken, Michael ; Genovese, Luigi ; Rouviere, Jean-Luc ; den Hertog, Martien ; Le Van-Jodin, Lucie ; Jamet, Matthieu ; Marty, Alain ; Okuno, Hanako</creatorcontrib><description>Epitaxial growth has become a promising route to achieve highly crystalline continuous two-dimensional layers. However, high-quality layer production with expected electrical properties is still challenging due to the defects induced by the coalescence between imperfectly aligned domains. In order to control their intrinsic properties at the device scale, the synthesized materials should be described as a patchwork of coalesced domains. Here, we report multi-scale and multi-structural analysis on highly oriented epitaxial WS
2
and WSe
2
monolayers using scanning transmission electron microscopy (STEM) techniques. Characteristic domain junctions are first identified and classified based on the detailed atomic structure analysis using aberration corrected STEM imaging. Mapping orientation, polar direction and phase at the micrometer scale using four-dimensional STEM enabled to access the density and the distribution of the specific domain junctions. Our results validate a readily applicable process for the study of highly oriented epitaxial transition metal dichalcogenides, providing an overview of synthesized materials from large scale down to atomic scale with multiple structural information.</description><identifier>ISSN: 2053-1583</identifier><identifier>EISSN: 2053-1583</identifier><identifier>DOI: 10.1088/2053-1583/acf3f9</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>atomic defects ; domain boundary ; epitaxial growth ; four-dimensional scanning transmission electron microscopy ; Physics ; transition metal dichalcogenides</subject><ispartof>2d materials, 2023-10, Vol.10 (4), p.45024</ispartof><rights>2023 IOP Publishing Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-f1272963db2ab6c5d860c0cf9f9f5a7c2ee56024b3cda903a94618f5d75a9083</citedby><cites>FETCH-LOGICAL-c346t-f1272963db2ab6c5d860c0cf9f9f5a7c2ee56024b3cda903a94618f5d75a9083</cites><orcidid>0000-0001-6718-106X ; 0009-0000-8531-8904 ; 0000-0002-8247-4677 ; 0000-0001-6336-1805 ; 0000-0002-3072-1381 ; 0000-0001-9739-9692 ; 0000-0003-1747-0247 ; 0000-0003-0781-9249 ; 0000-0001-5709-6945 ; 0000-0002-1657-7926 ; 0000-0002-7688-9526</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2053-1583/acf3f9/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27903,27904,38847,53819,53825,53872</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04291553$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dosenovic, Djordje</creatorcontrib><creatorcontrib>Dechamps, Samuel</creatorcontrib><creatorcontrib>Vergnaud, Celine</creatorcontrib><creatorcontrib>Pasko, Sergej</creatorcontrib><creatorcontrib>Krotkus, Simonas</creatorcontrib><creatorcontrib>Heuken, Michael</creatorcontrib><creatorcontrib>Genovese, Luigi</creatorcontrib><creatorcontrib>Rouviere, Jean-Luc</creatorcontrib><creatorcontrib>den Hertog, Martien</creatorcontrib><creatorcontrib>Le Van-Jodin, Lucie</creatorcontrib><creatorcontrib>Jamet, Matthieu</creatorcontrib><creatorcontrib>Marty, Alain</creatorcontrib><creatorcontrib>Okuno, Hanako</creatorcontrib><title>Mapping domain junctions using 4D-STEM: toward controlled properties of epitaxially grown transition metal dichalcogenide monolayers</title><title>2d materials</title><addtitle>2DM</addtitle><addtitle>2D Mater</addtitle><description>Epitaxial growth has become a promising route to achieve highly crystalline continuous two-dimensional layers. However, high-quality layer production with expected electrical properties is still challenging due to the defects induced by the coalescence between imperfectly aligned domains. In order to control their intrinsic properties at the device scale, the synthesized materials should be described as a patchwork of coalesced domains. Here, we report multi-scale and multi-structural analysis on highly oriented epitaxial WS
2
and WSe
2
monolayers using scanning transmission electron microscopy (STEM) techniques. Characteristic domain junctions are first identified and classified based on the detailed atomic structure analysis using aberration corrected STEM imaging. Mapping orientation, polar direction and phase at the micrometer scale using four-dimensional STEM enabled to access the density and the distribution of the specific domain junctions. Our results validate a readily applicable process for the study of highly oriented epitaxial transition metal dichalcogenides, providing an overview of synthesized materials from large scale down to atomic scale with multiple structural information.</description><subject>atomic defects</subject><subject>domain boundary</subject><subject>epitaxial growth</subject><subject>four-dimensional scanning transmission electron microscopy</subject><subject>Physics</subject><subject>transition metal dichalcogenides</subject><issn>2053-1583</issn><issn>2053-1583</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LxDAQLaKgrN495iaC1aRpuq030fUDVjy49zCbjzVLmpSk67p3f7gpFfGgzGFmHu89Zl6WnRJ8SXBdXxWY0Zywml6B0FQ3e9nRD7T_az7MTmJcY4zJtKIlqY6yz2foOuNWSPoWjEPrjRO98S6iTRzg8i5_Xcyer1HvtxAkEt71wVurJOqC71TojYrIa6Q608OHAWt3aBX81qE-gItmMEOt6sEiacQbWOFXyhmpUOudt7BTIR5nBxpsVCfffZIt7meL28d8_vLwdHszzwUtqz7XpJgWTUXlsoBlJZisKyyw0E0qBlNRKMUqXJRLKiQ0mEJTVqTWTE5ZWms6yc5H23QF74JpIey4B8Mfb-Z8wHBZNIQx-k4SF49cEXyMQekfAcF8yJwPofIhVD5mniRno8T4jq_9Jrj0Cy9kO0jKZM7SbbyTOjEv_mD-a_wFA0aSjQ</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Dosenovic, Djordje</creator><creator>Dechamps, Samuel</creator><creator>Vergnaud, Celine</creator><creator>Pasko, Sergej</creator><creator>Krotkus, Simonas</creator><creator>Heuken, Michael</creator><creator>Genovese, Luigi</creator><creator>Rouviere, Jean-Luc</creator><creator>den Hertog, Martien</creator><creator>Le Van-Jodin, Lucie</creator><creator>Jamet, Matthieu</creator><creator>Marty, Alain</creator><creator>Okuno, Hanako</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6718-106X</orcidid><orcidid>https://orcid.org/0009-0000-8531-8904</orcidid><orcidid>https://orcid.org/0000-0002-8247-4677</orcidid><orcidid>https://orcid.org/0000-0001-6336-1805</orcidid><orcidid>https://orcid.org/0000-0002-3072-1381</orcidid><orcidid>https://orcid.org/0000-0001-9739-9692</orcidid><orcidid>https://orcid.org/0000-0003-1747-0247</orcidid><orcidid>https://orcid.org/0000-0003-0781-9249</orcidid><orcidid>https://orcid.org/0000-0001-5709-6945</orcidid><orcidid>https://orcid.org/0000-0002-1657-7926</orcidid><orcidid>https://orcid.org/0000-0002-7688-9526</orcidid></search><sort><creationdate>20231001</creationdate><title>Mapping domain junctions using 4D-STEM: toward controlled properties of epitaxially grown transition metal dichalcogenide monolayers</title><author>Dosenovic, Djordje ; Dechamps, Samuel ; Vergnaud, Celine ; Pasko, Sergej ; Krotkus, Simonas ; Heuken, Michael ; Genovese, Luigi ; Rouviere, Jean-Luc ; den Hertog, Martien ; Le Van-Jodin, Lucie ; Jamet, Matthieu ; Marty, Alain ; Okuno, Hanako</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-f1272963db2ab6c5d860c0cf9f9f5a7c2ee56024b3cda903a94618f5d75a9083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>atomic defects</topic><topic>domain boundary</topic><topic>epitaxial growth</topic><topic>four-dimensional scanning transmission electron microscopy</topic><topic>Physics</topic><topic>transition metal dichalcogenides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dosenovic, Djordje</creatorcontrib><creatorcontrib>Dechamps, Samuel</creatorcontrib><creatorcontrib>Vergnaud, Celine</creatorcontrib><creatorcontrib>Pasko, Sergej</creatorcontrib><creatorcontrib>Krotkus, Simonas</creatorcontrib><creatorcontrib>Heuken, Michael</creatorcontrib><creatorcontrib>Genovese, Luigi</creatorcontrib><creatorcontrib>Rouviere, Jean-Luc</creatorcontrib><creatorcontrib>den Hertog, Martien</creatorcontrib><creatorcontrib>Le Van-Jodin, Lucie</creatorcontrib><creatorcontrib>Jamet, Matthieu</creatorcontrib><creatorcontrib>Marty, Alain</creatorcontrib><creatorcontrib>Okuno, Hanako</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>2d materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dosenovic, Djordje</au><au>Dechamps, Samuel</au><au>Vergnaud, Celine</au><au>Pasko, Sergej</au><au>Krotkus, Simonas</au><au>Heuken, Michael</au><au>Genovese, Luigi</au><au>Rouviere, Jean-Luc</au><au>den Hertog, Martien</au><au>Le Van-Jodin, Lucie</au><au>Jamet, Matthieu</au><au>Marty, Alain</au><au>Okuno, Hanako</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping domain junctions using 4D-STEM: toward controlled properties of epitaxially grown transition metal dichalcogenide monolayers</atitle><jtitle>2d materials</jtitle><stitle>2DM</stitle><addtitle>2D Mater</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>10</volume><issue>4</issue><spage>45024</spage><pages>45024-</pages><issn>2053-1583</issn><eissn>2053-1583</eissn><abstract>Epitaxial growth has become a promising route to achieve highly crystalline continuous two-dimensional layers. However, high-quality layer production with expected electrical properties is still challenging due to the defects induced by the coalescence between imperfectly aligned domains. In order to control their intrinsic properties at the device scale, the synthesized materials should be described as a patchwork of coalesced domains. Here, we report multi-scale and multi-structural analysis on highly oriented epitaxial WS
2
and WSe
2
monolayers using scanning transmission electron microscopy (STEM) techniques. Characteristic domain junctions are first identified and classified based on the detailed atomic structure analysis using aberration corrected STEM imaging. Mapping orientation, polar direction and phase at the micrometer scale using four-dimensional STEM enabled to access the density and the distribution of the specific domain junctions. Our results validate a readily applicable process for the study of highly oriented epitaxial transition metal dichalcogenides, providing an overview of synthesized materials from large scale down to atomic scale with multiple structural information.</abstract><pub>IOP Publishing</pub><doi>10.1088/2053-1583/acf3f9</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6718-106X</orcidid><orcidid>https://orcid.org/0009-0000-8531-8904</orcidid><orcidid>https://orcid.org/0000-0002-8247-4677</orcidid><orcidid>https://orcid.org/0000-0001-6336-1805</orcidid><orcidid>https://orcid.org/0000-0002-3072-1381</orcidid><orcidid>https://orcid.org/0000-0001-9739-9692</orcidid><orcidid>https://orcid.org/0000-0003-1747-0247</orcidid><orcidid>https://orcid.org/0000-0003-0781-9249</orcidid><orcidid>https://orcid.org/0000-0001-5709-6945</orcidid><orcidid>https://orcid.org/0000-0002-1657-7926</orcidid><orcidid>https://orcid.org/0000-0002-7688-9526</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2053-1583 |
ispartof | 2d materials, 2023-10, Vol.10 (4), p.45024 |
issn | 2053-1583 2053-1583 |
language | eng |
recordid | cdi_crossref_primary_10_1088_2053_1583_acf3f9 |
source | Institute of Physics IOPscience extra; Institute of Physics Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | atomic defects domain boundary epitaxial growth four-dimensional scanning transmission electron microscopy Physics transition metal dichalcogenides |
title | Mapping domain junctions using 4D-STEM: toward controlled properties of epitaxially grown transition metal dichalcogenide monolayers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A22%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20domain%20junctions%20using%204D-STEM:%20toward%20controlled%20properties%20of%20epitaxially%20grown%20transition%20metal%20dichalcogenide%20monolayers&rft.jtitle=2d%20materials&rft.au=Dosenovic,%20Djordje&rft.date=2023-10-01&rft.volume=10&rft.issue=4&rft.spage=45024&rft.pages=45024-&rft.issn=2053-1583&rft.eissn=2053-1583&rft_id=info:doi/10.1088/2053-1583/acf3f9&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04291553v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |