Functional manganese dioxide nanosheet for targeted photodynamic therapy and bioimaging in vitro and in vivo

Photodynamic therapy (PDT) has been widely studied as a promising non-invasive therapeutic strategy for the treatment of cancer. However, the poor solubility of photosensitizer (PS) in aqueous solution and inefficient cell-penetrating capability have limited the target-specific PDT. Herein, we devel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2d materials 2017-06, Vol.4 (2), p.25069
Hauptverfasser: Kim, Seongchan, Ahn, Seong Min, Lee, Ji-Seon, Kim, Tae Shik, Min, Dal-Hee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photodynamic therapy (PDT) has been widely studied as a promising non-invasive therapeutic strategy for the treatment of cancer. However, the poor solubility of photosensitizer (PS) in aqueous solution and inefficient cell-penetrating capability have limited the target-specific PDT. Herein, we develop a novel targeted photodynamic therapeutic and bioimaging system based on folic acid (FA)-conjugated MnO2 (FA-MnO2) nanosheet as a new carrier of PS, zinc phthalocyanine (ZnPc). ZnPc loaded FA-MnO2 nanosheet (FA-MnO2/ZnPc) complex is successfully formed by electrostatic interaction and coordination. We find that FA-MnO2/ZnPc complex exhibits excellent targeted delivery of ZnPc into folate receptor positive cancer cells and the ZnPc is released out from the complex via endogenous glutathione (GSH) stimulus, facilitating simultaneous bioimaging and targeted PDT by singlet oxygen (SO) generation upon light irradiation, showing high efficacy with only one tenth of conventional PS dosage in vitro and in vivo.
ISSN:2053-1583
2053-1583
DOI:10.1088/2053-1583/aa652f