Strain-engineered optoelectronic properties of 2D transition metal dichalcogenide lateral heterostructures

Compared with their bulk counterparts, 2D materials can sustain much higher elastic strain at which optical quantities such as bandgaps and absorption spectra governing optoelectronic device performance can be modified with relative ease. Using first-principles density functional theory and quasipar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2d materials 2017-02, Vol.4 (2), p.21016
Hauptverfasser: Lee, Jaekwang, Huang, Jingsong, Sumpter, Bobby G, Yoon, Mina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 21016
container_title 2d materials
container_volume 4
creator Lee, Jaekwang
Huang, Jingsong
Sumpter, Bobby G
Yoon, Mina
description Compared with their bulk counterparts, 2D materials can sustain much higher elastic strain at which optical quantities such as bandgaps and absorption spectra governing optoelectronic device performance can be modified with relative ease. Using first-principles density functional theory and quasiparticle GW calculations, we demonstrate how uniaxial tensile strain can be utilized to optimize the electronic and optical properties of transition metal dichalcogenide lateral (in-plane) heterostructures such as MoX2/WX2 (X  =  S, Se, Te). We find that these lateral-type heterostructures may facilitate efficient electron-hole separation for light detection/harvesting and preserve their type II characteristic up to 12% of uniaxial strain. Based on the strain-dependent bandgap and band offset, we show that uniaxial tensile strain can significantly increase the power conversion efficiency of these lateral heterostructures. Our results suggest that these strain-engineered lateral heterostructures are promising for optimizing optoelectronic device performance by selectively tuning the energetics of the bandgap.
doi_str_mv 10.1088/2053-1583/aa5542
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_2053_1583_aa5542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>tdmaa5542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-5473a2a8649b8f02d85e285d3b30e942135396f8eed5df5e584749ef476420fd3</originalsourceid><addsrcrecordid>eNp1UE1LAzEUXETBUnv3uHjw5Np8Nz1K_YSCB_Uc0uSlTdkmS5Ie_PemVMSDnt5jmJn3ZprmEqNbjKScEsRph7mkU605Z-SkGf1Ap7_282aS8xYhhGeCMixGzfatJO1DB2HtA0AC28ahROjBlBSDN-2Q4gCpeMhtdC25b6sgZF98DO0Oiu5b681G9yauIXgLba8LpApvoM6YS9qbsk-QL5ozp_sMk-85bj4eH94Xz93y9ellcbfsDGOidJzNqCZaCjZfSYeIlRyI5JauKII5I5hyOhdOAlhuHQcu2YzNwbGZYAQ5S8fN1dG33vYqG1_AbEwMoUZSmDIhCKokdCSZ-mJO4NSQ_E6nT4WROnSqDqWpQ2nq2GmVXB8lPg5qG_cp1BSq2J1iiihEMMJCDdZV4s0fxH99vwAXw4Xl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Strain-engineered optoelectronic properties of 2D transition metal dichalcogenide lateral heterostructures</title><source>IOP Publishing Journals</source><source>IOPscience extra</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Lee, Jaekwang ; Huang, Jingsong ; Sumpter, Bobby G ; Yoon, Mina</creator><creatorcontrib>Lee, Jaekwang ; Huang, Jingsong ; Sumpter, Bobby G ; Yoon, Mina ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Compared with their bulk counterparts, 2D materials can sustain much higher elastic strain at which optical quantities such as bandgaps and absorption spectra governing optoelectronic device performance can be modified with relative ease. Using first-principles density functional theory and quasiparticle GW calculations, we demonstrate how uniaxial tensile strain can be utilized to optimize the electronic and optical properties of transition metal dichalcogenide lateral (in-plane) heterostructures such as MoX2/WX2 (X  =  S, Se, Te). We find that these lateral-type heterostructures may facilitate efficient electron-hole separation for light detection/harvesting and preserve their type II characteristic up to 12% of uniaxial strain. Based on the strain-dependent bandgap and band offset, we show that uniaxial tensile strain can significantly increase the power conversion efficiency of these lateral heterostructures. Our results suggest that these strain-engineered lateral heterostructures are promising for optimizing optoelectronic device performance by selectively tuning the energetics of the bandgap.</description><identifier>ISSN: 2053-1583</identifier><identifier>EISSN: 2053-1583</identifier><identifier>DOI: 10.1088/2053-1583/aa5542</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>2D materials ; lateral heterostructure ; MATERIALS SCIENCE ; optoelectronic properties ; strain engineering ; transition metal dichalcogenides</subject><ispartof>2d materials, 2017-02, Vol.4 (2), p.21016</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-5473a2a8649b8f02d85e285d3b30e942135396f8eed5df5e584749ef476420fd3</citedby><cites>FETCH-LOGICAL-c446t-5473a2a8649b8f02d85e285d3b30e942135396f8eed5df5e584749ef476420fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2053-1583/aa5542/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,38868,53840,53846,53893</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1346620$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Jaekwang</creatorcontrib><creatorcontrib>Huang, Jingsong</creatorcontrib><creatorcontrib>Sumpter, Bobby G</creatorcontrib><creatorcontrib>Yoon, Mina</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Strain-engineered optoelectronic properties of 2D transition metal dichalcogenide lateral heterostructures</title><title>2d materials</title><addtitle>TDM</addtitle><addtitle>2D Mater</addtitle><description>Compared with their bulk counterparts, 2D materials can sustain much higher elastic strain at which optical quantities such as bandgaps and absorption spectra governing optoelectronic device performance can be modified with relative ease. Using first-principles density functional theory and quasiparticle GW calculations, we demonstrate how uniaxial tensile strain can be utilized to optimize the electronic and optical properties of transition metal dichalcogenide lateral (in-plane) heterostructures such as MoX2/WX2 (X  =  S, Se, Te). We find that these lateral-type heterostructures may facilitate efficient electron-hole separation for light detection/harvesting and preserve their type II characteristic up to 12% of uniaxial strain. Based on the strain-dependent bandgap and band offset, we show that uniaxial tensile strain can significantly increase the power conversion efficiency of these lateral heterostructures. Our results suggest that these strain-engineered lateral heterostructures are promising for optimizing optoelectronic device performance by selectively tuning the energetics of the bandgap.</description><subject>2D materials</subject><subject>lateral heterostructure</subject><subject>MATERIALS SCIENCE</subject><subject>optoelectronic properties</subject><subject>strain engineering</subject><subject>transition metal dichalcogenides</subject><issn>2053-1583</issn><issn>2053-1583</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1UE1LAzEUXETBUnv3uHjw5Np8Nz1K_YSCB_Uc0uSlTdkmS5Ie_PemVMSDnt5jmJn3ZprmEqNbjKScEsRph7mkU605Z-SkGf1Ap7_282aS8xYhhGeCMixGzfatJO1DB2HtA0AC28ahROjBlBSDN-2Q4gCpeMhtdC25b6sgZF98DO0Oiu5b681G9yauIXgLba8LpApvoM6YS9qbsk-QL5ozp_sMk-85bj4eH94Xz93y9ellcbfsDGOidJzNqCZaCjZfSYeIlRyI5JauKII5I5hyOhdOAlhuHQcu2YzNwbGZYAQ5S8fN1dG33vYqG1_AbEwMoUZSmDIhCKokdCSZ-mJO4NSQ_E6nT4WROnSqDqWpQ2nq2GmVXB8lPg5qG_cp1BSq2J1iiihEMMJCDdZV4s0fxH99vwAXw4Xl</recordid><startdate>20170217</startdate><enddate>20170217</enddate><creator>Lee, Jaekwang</creator><creator>Huang, Jingsong</creator><creator>Sumpter, Bobby G</creator><creator>Yoon, Mina</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20170217</creationdate><title>Strain-engineered optoelectronic properties of 2D transition metal dichalcogenide lateral heterostructures</title><author>Lee, Jaekwang ; Huang, Jingsong ; Sumpter, Bobby G ; Yoon, Mina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-5473a2a8649b8f02d85e285d3b30e942135396f8eed5df5e584749ef476420fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>2D materials</topic><topic>lateral heterostructure</topic><topic>MATERIALS SCIENCE</topic><topic>optoelectronic properties</topic><topic>strain engineering</topic><topic>transition metal dichalcogenides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jaekwang</creatorcontrib><creatorcontrib>Huang, Jingsong</creatorcontrib><creatorcontrib>Sumpter, Bobby G</creatorcontrib><creatorcontrib>Yoon, Mina</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>2d materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jaekwang</au><au>Huang, Jingsong</au><au>Sumpter, Bobby G</au><au>Yoon, Mina</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain-engineered optoelectronic properties of 2D transition metal dichalcogenide lateral heterostructures</atitle><jtitle>2d materials</jtitle><stitle>TDM</stitle><addtitle>2D Mater</addtitle><date>2017-02-17</date><risdate>2017</risdate><volume>4</volume><issue>2</issue><spage>21016</spage><pages>21016-</pages><issn>2053-1583</issn><eissn>2053-1583</eissn><abstract>Compared with their bulk counterparts, 2D materials can sustain much higher elastic strain at which optical quantities such as bandgaps and absorption spectra governing optoelectronic device performance can be modified with relative ease. Using first-principles density functional theory and quasiparticle GW calculations, we demonstrate how uniaxial tensile strain can be utilized to optimize the electronic and optical properties of transition metal dichalcogenide lateral (in-plane) heterostructures such as MoX2/WX2 (X  =  S, Se, Te). We find that these lateral-type heterostructures may facilitate efficient electron-hole separation for light detection/harvesting and preserve their type II characteristic up to 12% of uniaxial strain. Based on the strain-dependent bandgap and band offset, we show that uniaxial tensile strain can significantly increase the power conversion efficiency of these lateral heterostructures. Our results suggest that these strain-engineered lateral heterostructures are promising for optimizing optoelectronic device performance by selectively tuning the energetics of the bandgap.</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1088/2053-1583/aa5542</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2053-1583
ispartof 2d materials, 2017-02, Vol.4 (2), p.21016
issn 2053-1583
2053-1583
language eng
recordid cdi_crossref_primary_10_1088_2053_1583_aa5542
source IOP Publishing Journals; IOPscience extra; Institute of Physics (IOP) Journals - HEAL-Link
subjects 2D materials
lateral heterostructure
MATERIALS SCIENCE
optoelectronic properties
strain engineering
transition metal dichalcogenides
title Strain-engineered optoelectronic properties of 2D transition metal dichalcogenide lateral heterostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A45%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain-engineered%20optoelectronic%20properties%20of%202D%20transition%20metal%20dichalcogenide%20lateral%20heterostructures&rft.jtitle=2d%20materials&rft.au=Lee,%20Jaekwang&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2017-02-17&rft.volume=4&rft.issue=2&rft.spage=21016&rft.pages=21016-&rft.issn=2053-1583&rft.eissn=2053-1583&rft_id=info:doi/10.1088/2053-1583/aa5542&rft_dat=%3Ciop_cross%3Etdmaa5542%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true